HOME
*





Amagat
An amagat is a practical unit of volumetric number density. Although it can be applied to any substance at any conditions, it is defined as the number of ideal gas molecules per unit volume at 1  atm (101.325 kPa) and 0 °C (273.15 K). It is named after Émile Amagat, who also has Amagat's law named after him. The abbreviated form of amagat is "amg". The abbreviation "Am" has also been used. SI Conversion The amg unit for number density can be converted to the SI unit mol/m3 by the formula: :1 \,\mathrm \overset 44.615 \,\mathrm, where ≘ indicates correspondence, since the SI unit is of molar concentration and not number density. The conversion factor (44.615...) is called the '' Loschmidt number'' . The number density of an ideal gas at pressure ''p'' and temperature ''T'' can be calculated asIn this formula, absolute units of pressure and temperature, relative to vacuum and absolute zero, must be used. :\eta= \left(\frac\right)\left(\frac\right)\, , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loschmidt Number
The ''Loschmidt constant'' or Loschmidt's number (symbol: ''n''0) is the number of particles (atoms or molecules) of an ideal gas in a given volume (the number density), and usually quoted at standard temperature and pressure. The 2014 CODATA recommended value is per cubic metre at 0 °C and 1  atm and the 2006 CODATA recommended value was 2.686 7774(47) per cubic metre at 0 °C and 1 atm. It is named after the Austrian physicist Johann Josef Loschmidt, who was the first to estimate the physical size of molecules in 1865. The term "Loschmidt constant" is also sometimes used to refer to the Avogadro constant, particularly in German texts. The Loschmidt constant is given by the relationship: :n_0 = \frac where ''p''0 is the pressure, ''k''B is the Boltzmann constant and ''T''0 is the thermodynamic temperature. It is related to the Avogadro constant, ''N''A, by: :n_0 = \frac where ''R'' is the gas constant. Being a measure of number density, the Loschmidt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Émile Amagat
Émile Hilaire Amagat (2 January 1841, Saint-Satur – 15 February 1915) was a French physicist. His doctoral thesis, published in 1872, expanded on the work of Thomas Andrews, and included plots of the isotherms of carbon dioxide at high pressures. Amagat published a paper in 1877 that contradicted the current understanding at the time, concluding that the coefficient of compressibility of fluids decreased with increasing pressure. He continued to publish data on isotherms for a number of different gases between 1879 and 1882, and invented the hydraulic manometer, which was able to withstand up to 3200 atmospheres, as opposed to 400 atmospheres using a glass apparatus. In 1880 he published his law of partial volumes (now known as Amagat's law). For his studies, he developed many original piezometer devices. His originality went so far as to use the depth of a mine shaft being drilled to reach high pressures of 430 atmospheres in order to study the equations of state of cert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Density
The number density (symbol: ''n'' or ''ρ''N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density. ''Population density'' is an example of areal number density. The term number concentration (symbol: lowercase ''n'', or ''C'', to avoid confusion with amount of substance indicated by uppercase '' N'') is sometimes used in chemistry for the same quantity, particularly when comparing with other concentrations. Definition Volume number density is the number of specified objects per unit volume: :n = \frac, where ''N'' is the total number of objects in a volume ''V''. Here it is assumed that ''N'' is large enough that rounding of the count to the nearest integer does not introduce much of an error, however ''V'' is chosen to be small enough that the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Amount Of Substance
In chemistry, the amount of substance ''n'' in a given sample of matter is defined as the quantity or number of discrete atomic-scale particles in it divided by the Avogadro constant ''N''A. The particles or entities may be molecules, atoms, ions, electrons, or other, depending on the context, and should be specified (e.g. amount of sodium chloride ''n''NaCl). The value of the Avogadro constant ''N''A has been defined as . The mole (symbol: mol) is a unit of amount of substance in the International System of Units, defined (since 2019) by fixing the Avogadro constant at the given value.Bureau International des Poids et Mesures (2019): The International System of Units (SI)', 9th edition, English version, p. 134. Available at thBIPM website Sometimes, the amount of substance is referred to as the chemical amount. Role of amount of substance and its unit mole in chemistry Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope. As a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Room Temperature
Colloquially, "room temperature" is a range of air temperatures that most people prefer for indoor settings. It feels comfortable to a person when they are wearing typical indoor clothing. Human comfort can extend beyond this range depending on humidity, air circulation and other factors. Food or beverages may be served at ''room temperature'', meaning neither heated nor cooled. In certain fields, like science and engineering, and within a particular context, ''room temperature'' can mean different agreed-upon ranges. In contrast, ''ambient temperature'' is the actual temperature, as measured by a thermometer, of the air (or other medium and surroundings) in any particular place. The ambient temperature (e.g. an unheated room in winter) may be very different from an ideal ''room temperature''. Comfort temperatures ''The American Heritage Dictionary of the English Language'' identifies room temperature as around , while the ''Oxford English Dictionary'' states that it is "conv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Temperature And Pressure
Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted standards. Other organizations have established a variety of alternative definitions for their standard reference conditions. In chemistry, IUPAC changed its definition of standard temperature and pressure in 1982: * Until 1982, STP was defined as a temperature of 273.15  K (0 °C, 32 °F) and an absolute pressure of exactly 1  atm (101.325 kPa). * Since 1982, STP has been defined as a temperature of 273.15  K (0 °C, 32 °F) and an absolute pressure of exactly 105  Pa (100 kPa, 1 bar). STP should not be confused with the standard state com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kelvin (unit)
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and physicist William Thomson, 1st Baron Kelvin (1824–1907). The Kelvin scale is an absolute thermodynamic temperature scale, meaning it uses absolute zero as its null (zero) point. Historically, the Kelvin scale was developed by shifting the starting point of the much-older Celsius scale down from the melting point of water to absolute zero, and its increments still closely approximate the historic definition of a degree Celsius, but since 2019 the scale has been defined by fixing the Boltzmann constant to be exactly . Hence, one kelvin is equal to a change in the thermodynamic temperature that results in a change of thermal energy by . The temperature in degree Celsius is now defined as the temperature in kelvins minus 273.15, meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15 degrees on the Celsius scale (International System of Units), Note: The triple point of water is 0.01 °C, not 0 °C; thus 0 K is −2890.15 °C, not −273.16 °C. which equals −459.67 degrees on the Fahrenheit scale ( United States customary units or Imperial units). The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition. It is commonly thought of as the lowest temperature possible, but it is not the lowest ''enthalpy'' state poss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressure by around 20%. But hig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Molar Concentration
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/ dm3 in SI unit. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M. Definition Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c: :c = \frac = \frac = \frac. Here, n is the amount of the solute in moles, N is the number of constituent particles present in volume V (in litres) of the solution, and N_\text is the Av ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal Gas
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions. Under various conditions of temperature and pressure, many real gases behave qualitatively like an ideal gas where the gas molecules (or atoms for monatomic gas) play the role of the ideal particles. Many gases such as nitrogen, oxygen, hydrogen, noble gases, some heavier gases like carbon dioxide and mixtures such as air, can be treated as ideal gases within reasonable tolerances over a considerable parameter range around standard temperature and pressure. Generally, a gas behaves more like an ideal gas at higher temperature and lower pressu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Amagat's Law
Amagat's law or the Law of Partial Volumes describes the behaviour and properties of mixtures of ideal (as well as some cases of non-ideal) gases. It is of use in chemistry and thermodynamics. It is named after Emile Amagat. Overview Amagat's law states that the extensive volume ''V = Nv'' of a gas mixture is equal to the sum of volumes ''Vi'' of the ''K'' component gases, if the temperature ''T'' and the pressure ''p'' remain the same: : N\, v(T, p) = \sum_^K N_i\, v_i(T, p). This is the experimental expression of volume as an extensive quantity. According to Amagat's law of partial volume, the total volume of a non-reacting mixture of gases at constant temperature and pressure should be equal to the sum of the individual partial volumes of the constituent gases. So if V_1, V_2, \dots, V_n are considered to be the partial volumes of components in the gaseous mixture, then the total volume V would be represented as: :V = V_1 + V_2 + V_3 + \dots + V_n = \sum_ V_i Both Amagat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]