All-or-nothing Transform
In cryptography, an all-or-nothing transform (AONT), also known as an all-or-nothing protocol, is an encryption mode which allows the data to be understood only if all of it is known. AONTs are not encryption, but frequently make use of symmetric ciphers and may be applied before encryption. In exact terms, "an AONT is an unkeyed, invertible, randomized transformation, with the property that it is hard to invert unless all of the output is known." Algorithms The original AONT, the ''package transform'', was described by Ronald L. Rivest in his 1997 pape"All-Or-Nothing Encryption and The Package Transform" The transform that Rivest proposed involved preprocessing the plaintext by XORing each plaintext block with that block's index encrypted by a randomly chosen key, then appending one extra block computed by XORing that random key and the hashes of all the preprocessed blocks. The result of this preprocessing is called the ''pseudomessage'', and it serves as the input to the encrypti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Block Cipher Modes Of Operation
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation (encryption or decryption) of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block. Most modes require a unique binary sequence, often called an initialization vector (IV), for each encryption operation. The IV has to be non-repeating and, for some modes, random as well. The initialization vector is used to ensure distinct ciphertexts are produced even when the same plaintext is encrypted multiple times independently with the same key. Block ciphers may be capable of operating on more than one block size, but during transformation the block size is always fixed. Block cipher modes operate on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rivest
Ronald Linn Rivest (; born May 6, 1947) is a cryptographer and an Institute Professor at MIT. He is a member of MIT's Department of Electrical Engineering and Computer Science (EECS) and a member of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL). His work has spanned the fields of algorithms and combinatorics, cryptography, machine learning, and election integrity. Rivest is one of the inventors of the RSA algorithm (along with Adi Shamir and Len Adleman). He is the inventor of the symmetric key encryption algorithms RC2, RC4, RC5, and co-inventor of RC6. The "RC" stands for "Rivest Cipher", or alternatively, "Ron's Code". (RC3 was broken at RSA Security during development; similarly, RC1 was never published.) He also authored the MD2, MD4, MD5 and MD6 cryptographic hash functions. Education Rivest earned a Bachelor's degree in Mathematics from Yale University in 1969, and a Ph.D. degree in Computer Science from Stanford University in 1974 for resea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plaintext
In cryptography, plaintext usually means unencrypted information pending input into cryptographic algorithms, usually encryption algorithms. This usually refers to data that is transmitted or stored unencrypted. Overview With the advent of computing, the term ''plaintext'' expanded beyond human-readable documents to mean any data, including binary files, in a form that can be viewed or used without requiring a key or other decryption device. Information—a message, document, file, etc.—if to be communicated or stored in an unencrypted form is referred to as plaintext. Plaintext is used as input to an encryption algorithm; the output is usually termed ciphertext, particularly when the algorithm is a cipher. Codetext is less often used, and almost always only when the algorithm involved is actually a code. Some systems use multiple layers of encryption, with the output of one encryption algorithm becoming "plaintext" input for the next. Secure handling Insecure handling of p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Oracle Model
In cryptography, a random oracle is an oracle (a theoretical black box) that responds to every ''unique query'' with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted. Stated differently, a random oracle is a mathematical function chosen uniformly at random, that is, a function mapping each possible query to a (fixed) random response from its output domain. Random oracles as a mathematical abstraction were first used in rigorous cryptographic proofs in the 1993 publication by Mihir Bellare and Phillip Rogaway (1993). They are typically used when the proof cannot be carried out using weaker assumptions on the cryptographic hash function. A system that is proven secure when every hash function is replaced by a random oracle is described as being secure in the random oracle model, as opposed to secure in the standard model of cryptography. Applications Random oracles are typical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Export Of Cryptography
The export of cryptography is the transfer from one country to another of devices and technology related to cryptography. In the early days of the Cold War, the United States and its allies developed an elaborate series of export control regulations designed to prevent a wide range of Western technology from falling into the hands of others, particularly the Eastern bloc. All export of technology classed as 'critical' required a license. CoCom was organized to coordinate Western export controls. Currently, many countries, notably those participating in the Wassenaar Arrangement, have similar restrictions. The Wassenaar restrictions are largely loosensed in the late 2010s. References See also * Export of cryptography from the United States * Restrictions on the import of cryptography A number of countries have attempted to restrict the import of cryptography tools. Rationale Countries may wish to restrict import of cryptography technologies for a number of reasons: * Import ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forward Error Correction
In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with redundant information in the form of an ECC. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. ECC contrasts with error detection in that errors that are encountered can be corrected, not simply detected. The advantage is that a system using ECC does not require a reverse channel to request retransmission of data when an error occurs. The downside is that there is a fixed overhead that is added to the message, thereby requiring a h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Secret Sharing
Secret sharing (also called secret splitting) refers to methods for distributing a secret among a group, in such a way that no individual holds any intelligible information about the secret, but when a sufficient number of individuals combine their 'shares', the secret may be reconstructed. Whereas ''insecure'' secret sharing allows an attacker to gain more information with each share, ''secure'' secret sharing is 'all or nothing' (where 'all' means the necessary number of shares). In one type of secret sharing scheme there is one ''dealer'' and ''n'' ''players''. The dealer gives a share of the secret to the players, but only when specific conditions are fulfilled will the players be able to reconstruct the secret from their shares. The dealer accomplishes this by giving each player a share in such a way that any group of ''t'' (for ''threshold'') or more players can together reconstruct the secret but no group of fewer than ''t'' players can. Such a system is called a -threshol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |