HOME
*





Alexander Arhangelskii
Alexander Vladimirovich Arhangelskii (russian: Александр Владимирович Архангельский, ''Aleksandr Vladimirovich Arkhangelsky'', born 13 March 1938 in Moscow) is a Russian mathematician. His research, comprising over 200 published papers, covers various subfields of general topology. He has done particularly important work in metrizability theory and generalized metric spaces, cardinal functions, topological function spaces and other topological groups, and special classes of topological maps. After a long and distinguished career at Moscow State University, he moved to the United States in the 1990s. In 1993 he joined the faculty of Ohio University, from which he retired in 2011. Biography Arhangelskii was the son of Vladimir Alexandrovich Arhangelskii and Maria Pavlova Radimova, who divorced by the time he was four years old. He was raised in Moscow by his father. He was also close to his uncle, childless aircraft designer Alexander Arkhangelsky. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moscow
Moscow ( , US chiefly ; rus, links=no, Москва, r=Moskva, p=mɐskˈva, a=Москва.ogg) is the capital and largest city of Russia. The city stands on the Moskva River in Central Russia, with a population estimated at 13.0 million residents within the city limits, over 17 million residents in the urban area, and over 21.5 million residents in the metropolitan area. The city covers an area of , while the urban area covers , and the metropolitan area covers over . Moscow is among the world's largest cities; being the most populous city entirely in Europe, the largest urban and metropolitan area in Europe, and the largest city by land area on the European continent. First documented in 1147, Moscow grew to become a prosperous and powerful city that served as the capital of the Grand Duchy that bears its name. When the Grand Duchy of Moscow evolved into the Tsardom of Russia, Moscow remained the political and economic center for most of the Tsardom's history. When th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cardinality Of The Continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathbb R, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a''  \mathfrak c . Alternative explanation for 𝔠 = 2ℵ0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First-countable Space
In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local base). That is, for each point x in X there exists a sequence N_1, N_2, \ldots of neighbourhoods of x such that for any neighbourhood N of x there exists an integer i with N_i contained in N. Since every neighborhood of any point contains an open neighborhood of that point, the neighbourhood basis can be chosen without loss of generality to consist of open neighborhoods. Examples and counterexamples The majority of 'everyday' spaces in mathematics are first-countable. In particular, every metric space is first-countable. To see this, note that the set of open balls centered at x with radius 1/n for integers form a countable local base at x. An example of a space which is not first-countable is the cofinite topology on an uncountable set ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Urysohn
Pavel Samuilovich Urysohn () (February 3, 1898 – August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory, and for developing Urysohn's metrization theorem and Urysohn's lemma, both of which are fundamental results in topology. His name is also commemorated in the terms Urysohn universal space, Fréchet–Urysohn space, Menger–Urysohn dimension and Urysohn integral equation. He and Pavel Alexandrov formulated the modern definition of compactness in 1923. Biography Born in 1898 in Odessa, Urysohn studied at Moscow University from 1915 to 1921. His advisor was Nikolai Luzin. He then became an assistant professor there. He drowned in 1924 while swimming off the coast of Brittany, France, near Batz-sur-Mer, and is buried there. Urysohn's sister, Lina Neiman, wrote a memoir about his life and childhood. Not being a mathematician, she included in the book memorial articles about his mathematical works by Pavel Alexandrov, Va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Doctor Of Sciences
Doctor of Sciences ( rus, доктор наук, p=ˈdoktər nɐˈuk, abbreviated д-р наук or д. н.; uk, доктор наук; bg, доктор на науките; be, доктар навук) is a higher doctoral degree in the Russian Empire, Soviet Union and many post-Soviet countries, which may be earned after the Candidate of Sciences. History The "Doctor of Sciences" degree was introduced in the Russian Empire in 1819 and abolished in 1917. Later it was revived in the USSR on January 13, 1934, by a decision of the Council of People's Commissars of the USSR. By the same decision, a lower degree, "Candidate of Sciences" (''kandidat nauk''), roughly the Russian equivalent to the research doctorate in other countries, was first introduced. This system was generally adopted by the USSR/Russia and many post-Soviet/Eastern bloc states, including Bulgaria, Belarus, former Czechoslovakia, Poland (since abolished), and Ukraine. But note that the former Yugoslav degree "Do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Steklov Institute Of Mathematics
Steklov Institute of Mathematics or Steklov Mathematical Institute (russian: Математический институт имени В.А.Стеклова) is a premier research institute based in Moscow, specialized in mathematics, and a part of the Russian Academy of Sciences. The institute is named after Vladimir Andreevich Steklov, who in 1919 founded the Institute of Physics and Mathematics in Leningrad. In 1934, this institute was split into separate parts for physics and mathematics, and the mathematical part became the Steklov Institute. At the same time, it was moved to Moscow. The first director of the Steklov Institute was Ivan Matveyevich Vinogradov. From 19611964, the institute's director was the notable mathematician Sergei Chernikov. The old building of the Institute in Leningrad became its Department in Leningrad. Today, that department has become a separate institute, called the ''St. Petersburg Department of Steklov Institute of Mathematics of Russian Academy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Candidate Of Sciences
Candidate of Sciences (russian: кандидат наук, translit=kandidat nauk) is the first of two doctoral level scientific degrees in Russia and the Commonwealth of Independent States. It is formally classified as UNESCO's ISCED level 8, "doctoral or equivalent". It may be recognized as Doctor of Philosophy, usually in natural sciences, by scientific institutions in other countries. Former Soviet countries also have a more advanced degree, Doctor of Sciences. Overview The degree was first introduced in the USSR on 13 January 1934 by a decision of the Council of People's Commissars of the USSR, all previous degrees, ranks and titles having been abolished immediately after the October Revolution in 1917. Academic distinctions and ranks were viewed as survivals of capitalist inequality and hence were to be permanently eliminated. The original decree also recognized some degrees earned prior to 1917 in Tsarist Russia and elsewhere. To attain the Candidate of Sciences de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]