HOME
*





Air Data Module
An air data module is a component of the navigation system. Each unit converts pneumatic (air pressure) information from a pitot tube or a static port into numerical information which is sent on a data bus. This pressure information is received and processed by the Air Data Reference (ADR) component of the Air Data Inertial Reference Unit (ADIRU). This processed information is then sent to one or more display management computers that present information on the cockpit's primary flight display. Airspeed information is also sent to the flight computers and other electronics, including the autoflight subsystem (e.g. flight management and guidance system). Construction The air data module is a gas pressure sensor which converts mechanical forces created by gas pressure into digital signals that can be carried to the air data reference unit. ADMs generally have a maintenance bus and communication bus, and a connector on the housing for a pressurized gas line that is connected to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ADIRU
An Air Data Inertial Reference Unit (ADIRU) is a key component of the integrated Air Data Inertial Reference System (ADIRS), which supplies air data (airspeed, angle of attack and altitude) and inertial reference (position and attitude) information to the pilots' electronic flight instrument system displays as well as other systems on the aircraft such as the engines, autopilot, aircraft flight control system and landing gear systems. An ADIRU acts as a single, fault tolerant source of navigational data for both pilots of an aircraft. It may be complemented by a secondary attitude air data reference unit (SAARU), as in the Boeing 777 design. This device is used on various military aircraft as well as civilian airliners starting with the Airbus A320 and Boeing 777. Description An ADIRS consists of up to three fault tolerant ADIRUs located in the aircraft electronic rack, an associated control and display unit (CDU) in the cockpit and remotely mounted air data modules (ADMs). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Air Data Inertial Reference Unit
An Air Data Inertial Reference Unit (ADIRU) is a key component of the integrated Air Data Inertial Reference System (ADIRS), which supplies air data (airspeed, angle of attack and altitude) and inertial reference (position and attitude) information to the pilots' electronic flight instrument system displays as well as other systems on the aircraft such as the engines, autopilot, aircraft flight control system and landing gear systems. An ADIRU acts as a single, fault tolerant source of navigational data for both pilots of an aircraft. It may be complemented by a secondary attitude air data reference unit (SAARU), as in the Boeing 777 design. This device is used on various military aircraft as well as civilian airliners starting with the Airbus A320 and Boeing 777. Description An ADIRS consists of up to three fault tolerant ADIRUs located in the aircraft electronic rack, an associated control and display unit (CDU) in the cockpit and remotely mounted air data modules (ADMs). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Airspeed Indication System - Fly By Wire
In aviation, airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are: * Indicated airspeed ("IAS"), what is read on an airspeed gauge connected to a Pitot-static system; * Calibrated airspeed ("CAS"), indicated airspeed adjusted for pitot system position and installation error; * Equivalent airspeed ("EAS"), calibrated airspeed adjusted for compressibility effects; * True airspeed ("TAS"), equivalent airspeed adjusted for air density, and is also the speed of the aircraft through the air in which it is flying. Calibrated airspeed is typically within a few knots of indicated airspeed, while equivalent airspeed decreases slightly from CAS as aircraft altitude increases or at high speeds. With EAS constant, true airspeed increases as aircraft altitude increases. This is because air density decreases with higher altitude. The measurement and indication of airspeed is ordinarily accomplished on board an aircraft by an airs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Navigation System
A navigation system is a computing system that aids in navigation. Navigation systems may be entirely on board the vehicle or vessel that the system is controlling (for example, on the ship's bridge) or located elsewhere, making use of radio or other signal transmission to control the vehicle or vessel. In some cases, a combination of these methods is used. Navigation systems may be capable of one or more of: * containing maps, which may be displayed in human-readable format via text or in a graphical format * determining a vehicle or vessel's location via sensors, maps, or information from external sources * providing suggested directions to a human in charge of a vehicle or vessel via text or speech * providing directions directly to an autonomous vehicle such as a robotic probe or guided missile * providing information on nearby vehicles or vessels, or other hazards or obstacles * providing information on traffic conditions and suggesting alternative directions * simultaneous l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pitot Tube
A pitot ( ) tube (pitot probe) measures fluid flow velocity. It was invented by a French engineer, Henri Pitot, in the early 18th century, and was modified to its modern form in the mid-19th century by a French scientist, Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry. Theory of operation The basic pitot tube consists of a tube pointing directly into the fluid flow. As this tube contains fluid, a pressure can be measured; the moving fluid is brought to rest (stagnates) as there is no outlet to allow flow to continue. This pressure is the stagnation pressure of the fluid, also known as the total pressure or (particularly in aviation) the pitot pressure. The measured stagnation pressure cannot itself be used to determine the fluid flow velocity (airspeed in aviation). However, Bernoulli's equation states: :Stagnation pressure = static pressure + dynamic pressure Whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Static Port
A pitot-static system is a system of pressure-sensitive instruments that is most often used in aviation to determine an aircraft's airspeed, Mach number, altitude, and altitude trend. A pitot-static system generally consists of a pitot tube, a static port, and the pitot-static instruments. Other instruments that might be connected are air data computers, flight data recorders, altitude encoders, cabin pressurization controllers, and various airspeed switches. Errors in pitot-static system readings can be extremely dangerous as the information obtained from the pitot static system, such as altitude, is potentially safety-critical. Several commercial airline disasters have been traced to a failure of the pitot-static system. Pitot-static pressure The pitot-static system of instruments uses the principle of air pressure gradient. It works by measuring pressures or pressure differences and using these values to assess the speed and altitude. These pressures can be measured ei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Primary Flight Display
A primary flight display or PFD is a modern aircraft instrument dedicated to flight information. Much like multi-function displays, primary flight displays are built around a Liquid-crystal display or CRT display device. Representations of older six pack or "steam gauge" instruments are combined on one compact display, simplifying pilot workflow and streamlining cockpit layouts. Most airliners built since the 1980s—as well as many business jets and an increasing number of newer general aviation aircraft—have glass cockpits equipped with primary flight and multi-function displays (MFDs). Cirrus Aircraft was the first general aviation manufacturer to add a PFD to their already existing MFD, which they made standard on their SR-series aircraft in 2003. Mechanical gauges have not been eliminated from the cockpit with the onset of the PFD; they are retained for backup purposes in the event of total electrical failure. Components While the PFD does not directly use the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Autopilot
An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations (for example, monitoring the trajectory, weather and on-board systems). When present, an autopilot is often used in conjunction with an autothrottle, a system for controlling the power delivered by the engines. An autopilot system is sometimes colloquially referred to as ''"George"'' (e.g. ''"we'll let George fly for a while"''). The etymology of the nickname is unclear: some claim it is a reference to inventor George De Beeson, who patented an autopilot in the 1930s, while others claim that Royal Air Force pilots coined the term during World War II to symbolize that their aircraft technically belonged to King George VI. First autopilots In th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flight Management System
A flight management system (FMS) is a fundamental component of a modern airliner's avionics. An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. A primary function is in-flight management of the flight plan. Using various sensors (such as GPS and INS often backed up by radio navigation) to determine the aircraft's position, the FMS can guide the aircraft along the flight plan. From the cockpit, the FMS is normally controlled through a Control Display Unit (CDU) which incorporates a small screen and keyboard or touchscreen. The FMS sends the flight plan for display to the Electronic Flight Instrument System (EFIS), Navigation Display (ND), or Multifunction Display (MFD). The FMS can be summarised as being a dual system consisting of the Flight Management Computer (FMC), CDU and a cross talk bus. The modern FMS w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

EIA-485
RS-485, also known as TIA-485(-A) or EIA-485, is a standard defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications. Overview RS-485 supports inexpensive local networks and multidrop communications links, using the same differential signaling over twisted pair as RS-422. It is generally accepted that RS-485 can be used with data rates up to 10 Mbit/s or, at lower speeds, distances up to . As a rule of thumb, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ARINC 429
ARINC 429, "Mark33 Digital Information Transfer System (DITS)," is also known as the Aeronautical Radio INC. (ARINC) technical standard for the predominant avionics data bus used on most higher-end commercial and transport aircraft. It defines the physical and electrical interfaces of a two-wire data bus and a data protocol to support an aircraft's avionics local area network. Technical description Medium and Signaling ARINC 429 is a data transfer standard for aircraft avionics. It uses a self-clocking, self-synchronizing data bus protocol (Tx and Rx are on separate ports). The physical connection wires are twisted pairs carrying balanced differential signaling. Data words are 32 bits in length and most messages consist of a single data word. Messages are transmitted at either 12.5 or 100 kbit/s to other system elements that are monitoring the bus messages. The transmitter constantly transmits either 32-bit data words or the NULL state (0 Volts). A single wire pair is limited to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Avionics
Avionics (a blend word, blend of ''aviation'' and ''electronics'') are the Electronics, electronic systems used on aircraft. Avionic systems include communications, Air navigation, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform. History The term "avionics" was coined in 1949 by Philip J. Klass, senior editor at ''Aviation Week & Space Technology'' magazine as a portmanteau of "aviation electronics". Radio communication was first used in aircraft just prior to World War I. The first Airborne radio relay, airborne radios were in zeppelins, but the military sparked development of light radio sets that could be carried by heavier-than-air craft, so that aerial reconnaissance biplanes could report their observations immediately in case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]