HOME
*





AMD 29000
The AMD Am29000, commonly shortened to 29k, is a family of 32-bit RISC microprocessors and microcontrollers developed and fabricated by Advanced Micro Devices (AMD). Based on the seminal Berkeley RISC, the 29k added a number of significant improvements. They were, for a time, the most popular RISC chips on the market, widely used in laser printers from a variety of manufacturers. Developed since 1984-1985, announced in March 1987 and released in May 1988, the initial Am29000 was followed by several versions, ending with the Am29040 in 1995. The 29050 was notable for being early to feature a floating point unit capable of executing one multiply–add operation per cycle. AMD was designing a superscalar version until late 1995, when AMD dropped the development of the 29k because the design team was transferred to support the PC (x86) side of the business. What remained of AMD's embedded business was realigned towards the embedded 186 family of 80186 derivatives. By then the major ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD Am29000-16GC
Advanced Micro Devices, Inc. (AMD) is an American multinational semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets. While it initially manufactured its own processors, the company later outsourced its manufacturing, a practice known as going fabless, after GlobalFoundries was spun off in 2009. AMD's main products include microprocessors, motherboard chipsets, embedded processors, graphics processors, and FPGAs for servers, workstations, personal computers, and embedded system applications. History First twelve years Advanced Micro Devices was formally incorporated by Jerry Sanders, along with seven of his colleagues from Fairchild Semiconductor, on May 1, 1969. Sanders, an electrical engineer who was the director of marketing at Fairchild, had, like many Fairchild executives, grown frustrated with the increasing lack of support, opportunity, and flexibility within the comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel I960
Intel's i960 (or 80960) was a RISC-based microprocessor design that became popular during the early 1990s as an embedded microcontroller. It became a best-selling CPU in that segment, along with the competing AMD 29000. In spite of its success, Intel stopped marketing the i960 in the late 1990s, as a result of a settlement with DEC whereby Intel received the rights to produce the StrongARM CPU. The processor continues to be used for a few military applications. Origin The i960 design was begun in response to the failure of Intel's iAPX 432 design of the early 1980s. The iAPX 432 was intended to directly support high-level languages that supported tagged, protected, garbage-collected memory—such as Ada and Lisp—in hardware. Because of its instruction-set complexity, its multi-chip implementation, and design flaws, the iAPX 432 was very slow in comparison to other processors of its time. In 1984, Intel and Siemens started a joint project, ultimately called BiiN, to cr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kibibyte
The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as The Internet Protocol () refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The first bit is number 0, making the eighth bit number 7. The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating Point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Management Unit
A memory management unit (MMU), sometimes called paged memory management unit (PMMU), is a computer hardware unit having all memory references passed through itself, primarily performing the translation of virtual memory addresses to physical addresses. An MMU effectively performs virtual memory management, handling at the same time memory protection, cache control, bus arbitration and, in simpler computer architectures (especially 8-bit systems), bank switching. Overview Modern MMUs typically divide the virtual address space (the range of addresses used by the processor) into pages, each having a size which is a power of 2, usually a few kilobytes, but they may be much larger. The bottom bits of the address (the offset within a page) are left unchanged. The upper address bits are the virtual page numbers. Page table entries Most MMUs use an in-memory table of items called a "page table", containing one "page table entry" (PTE) per page, to map virtual page numbers to ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Branch Predictor
In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g., an if–then–else structure) will go before this is known definitively. The purpose of the branch predictor is to improve the flow in the instruction pipeline. Branch predictors play a critical role in achieving high performance in many modern pipelined microprocessor architectures such as x86. Two-way branching is usually implemented with a conditional jump instruction. A conditional jump can either be "taken" and jump to a different place in program memory, or it can be "not taken" and continue execution immediately after the conditional jump. It is not known for certain whether a conditional jump will be taken or not taken until the condition has been calculated and the conditional jump has passed the execution stage in the instruction pipeline (see fig. 1). Without branch prediction, the processor would have to wait until the conditional jump instruction has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


KL AMD 29040
KL, kL, kl, or kl. may refer to: Businesses and organizations * KLM, a Dutch airline (IATA airline designator KL) * Koninklijke Landmacht, the Royal Netherlands Army * Kvenna Listin ("Women's List"), a political party in Iceland * KL FM, a Malay language radio station Places * Kaiserslautern, Germany (license plate code KL) * Kerala, India (ISO 3166-2:IN subcode KL) * Kirkland Lake, Ontario, Canada * Kowloon, Hong Kong * Kuala Lumpur, Malaysia Science, technology, and mathematics * KL engine, version of the Mazda K engine * Klepton (kl.), a type of species in zoology * Kiloliter (kL), a unit of volume * Kullback–Leibler divergence in mathematics * KL (gene), a gene which encodes the klotho enzyme in humans Other uses * Jeep Cherokee (KL) * Kalaallisut language (ISO 639 alpha-2 language code "kl") * Kl (digraph), used in the Zulu language to write /kʟ̥ʼ/ or /kxʼ/ * Konzentrationslager, or concentration camp, abbreviated KZ or KL * ''KL – A History of the Nazi Concentratio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Return Address (computing)
In computer programming, a return statement causes execution to leave the current subroutine and resume at the point in the code immediately after the instruction which called the subroutine, known as its return address. The return address is saved by the calling routine, today usually on the process's call stack or in a register. Return statements in many programming languages allow a function to specify a return value to be passed back to the code that called the function. Overview In C and C++, return ''exp''; (where ''exp'' is an expression) is a statement that tells a function to return execution of the program to the calling function, and report the value of ''exp''. If a function has the return type void, the return statement can be used without a value, in which case the program just breaks out of the current function and returns to the calling one. In Pascal there is no return statement. (However, in newer Pascals, the Exit(''exp''); can be used to return a value imm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanford MIPS
MIPS, an acronym for Microprocessor without Interlocked Pipeline Stages, was a research project conducted by John L. Hennessy at Stanford University between 1981 and 1984. MIPS investigated a type of instruction set architecture (ISA) now called reduced instruction set computer (RISC), its implementation as a microprocessor with very large scale integration (VLSI) semiconductor technology, and the effective exploitation of RISC architectures with optimizing compilers. MIPS, together with the IBM 801 and Berkeley RISC, were the three research projects that pioneered and popularized RISC technology in the mid-1980s. In recognition of the impact MIPS made on computing, Hennessey was awarded the IEEE John von Neumann Medal in 2000 by the Institute of Electrical and Electronics Engineers (IEEE) (shared with David A. Patterson), the Eckert–Mauchly Award in 2001 by the Association for Computing Machinery, the Seymour Cray Computer Engineering Award in 2001 by the IEEE Computer Society, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stanford University
Stanford University, officially Leland Stanford Junior University, is a private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. Stanford is considered among the most prestigious universities in the world. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost of Stanford Frederick Terman inspired and supported faculty and graduates' entrepreneu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Processor Register
A processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900. Almost all computers, whether load/store architecture or not, load data from a larger memory into registers where it is used for arithmetic operations and is manipulated or tested by machine instructions. Manipulated data is then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either static or dynamic RAM as main memory, with the latter usually accessed via one or more cache levels. Processor registers are normally at the top of the memory hierarchy, and provide the fastest way to access data. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Procedure Call
In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed. Functions may be defined within programs, or separately in libraries that can be used by many programs. In different programming languages, a function may be called a routine, subprogram, subroutine, method, or procedure. Technically, these terms all have different definitions, and the nomenclature varies from language to language. The generic umbrella term ''callable unit'' is sometimes used. A function is often coded so that it can be started several times and from several places during one execution of the program, including from other functions, and then branch back (''return'') to the next instruction after the ''call'', once the function's task is done. The idea of a subroutine was initially conceived by John Mauchly during his work on ENIAC, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]