HOME
*





AB5 Category
In mathematics, in his " Tôhoku paper" introduced a sequence of axioms of various kinds of categories enriched over the symmetric monoidal category of abelian groups. Abelian categories are sometimes called AB2 categories, according to the axiom (AB2). AB3 categories are abelian categories possessing arbitrary coproducts (hence, by the existence of quotients in abelian categories, also all colimits). AB5 categories are the AB3 categories in which filtered colimits of exact sequences are exact. Grothendieck categories are the AB5 categories with a generator. References *{{Citation , last1=Grothendieck , first1=Alexander , author1-link=Alexander Grothendieck , title=Sur quelques points d'algèbre homologique , url=http://projecteuclid.org/euclid.tmj/1178244839 , mr=0102537 , year=1957 , journal=Tohoku Mathematical Journal The ''Tohoku Mathematical Journal'' is a mathematical research journal published by Tohoku University in Japan. It was founded in August 1911 b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coproduct
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products. Definition Let C be a category and let X_1 and X_2 be objects of C. An object is called the coproduct of X_1 and X_2, written X_1 \sqcup X_2, or X_1 \oplus X_2, or sometimes simply X_1 + X_2, if there exist morphisms i_1 : X_1 \to X_1 \sqcup X_2 and i_2 : X_2 \to X_1 \sqcup X_2 satisfying the following universal property: for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tohoku Mathematical Journal
The ''Tohoku Mathematical Journal'' is a mathematical research journal published by Tohoku University in Japan. It was founded in August 1911 by Tsuruichi Hayashi. History Due to World War II the publication of the journal stopped in 1943 with volume 49. Publication was resumed in 1949 with the volume numbering starting again at 1. In order to distinguish between the identical numbered volumes, volumes in the first publishing period are referred to as the ''first series'' whereas the later volumes are called ''second series''. Before volume 51 of the second series the journal was called ''Tôhoku Mathematical Journal'', with a circumflex over the second letter of ''Tohoku''. Selected papers *. The first publication of the Sprague–Grundy theorem, the basis for much of combinatorial game theory, later independently rediscovered by P. M. Grundy. *. This paper describes Weiszfeld's algorithm for finding the geometric median. *. This paper, often referred to as " The Tohoku pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generator (category Theory)
In mathematics, specifically category theory, a family of generators (or family of separators) of a category \mathcal C is a collection \mathcal G \subseteq Ob(\mathcal C) of objects in \mathcal C, such that for any two ''distinct'' morphisms f, g: X \to Y in \mathcal, that is with f \neq g, there is some G in \mathcal G and some morphism h : G \to X such that f \circ h \neq g \circ h. If the collection consists of a single object G, we say it is a generator (or separator). Generators are central to the definition of Grothendieck categories. The dual concept is called a cogenerator or coseparator. Examples * In the category of abelian groups, the group of integers \mathbf Z is a generator: If ''f'' and ''g'' are different, then there is an element x \in X, such that f(x) \neq g(x). Hence the map \mathbf Z \rightarrow X, n \mapsto n \cdot x suffices. * Similarly, the one-point set is a generator for the category of sets. In fact, any nonempty set is a generator. * In the category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grothendieck Category
In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957English translation in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962. To every algebraic variety V one can associate a Grothendieck category \operatorname(V), consisting of the quasi-coherent sheaves on V. This category encodes all the relevant geometric information about V, and V can be recovered from \operatorname(V) (the Gabriel–Rosenberg reconstruction theorem). This example gives rise to one approach to noncommutative algebraic geometry: the study of "non-commutative varieties" is then nothing but the study of (certain) Grothendieck categories. Definition By definition, a Grothendieck category \mathcal is an AB5 category with a generator. Spelled out, this means that * \mathcal is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

Filtered Colimit
In category theory, filtered categories generalize the notion of directed set understood as a category (hence called a directed category; while some use directed category as a synonym for a filtered category). There is a dual notion of cofiltered category, which will be recalled below. Filtered categories A category J is filtered when * it is not empty, * for every two objects j and j' in J there exists an object k and two arrows f:j\to k and f':j'\to k in J, * for every two parallel arrows u,v:i\to j in J, there exists an object k and an arrow w:j\to k such that wu=wv. A filtered colimit is a colimit of a functor F:J\to C where J is a filtered category. Cofiltered categories A category J is cofiltered if the opposite category J^ is filtered. In detail, a category is cofiltered when * it is not empty, * for every two objects j and j' in J there exists an object k and two arrows f:k\to j and f':k \to j' in J, * for every two parallel arrows u,v:j\to i in J, there exists an obje ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Colimit
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits. Limits and colimits, like the strongly related notions of universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. One is most often interested in the case where the category J is a small or even finite category. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck's Tôhoku Paper
The article "Sur quelques points d'algèbre homologique" by Alexander Grothendieck, now often referred to as the ''Tôhoku'' paper, was published in 1957 in the ''Tôhoku Mathematical Journal''. It has revolutionized the subject of homological algebra, a purely algebraic aspect of algebraic topology. It removed the need to distinguish the cases of modules over a ring and sheaves of abelian groups over a topological space. Background Material in the paper dates from Grothendieck's year at the University of Kansas in 1955–6. Research there allowed him to put homological algebra on an axiomatic basis, by introducing the abelian category concept. A textbook treatment of homological algebra, "Cartan–Eilenberg" after the authors Henri Cartan and Samuel Eilenberg, appeared in 1956. Grothendieck's work was largely independent of it. His abelian category concept had at least partially been anticipated by others. David Buchsbaum in his doctoral thesis written under Eilenberg had int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Categories
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]