HOME
*



picture info

A8 Lattice
In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb. A8 lattice This vertex arrangement is called the A8 lattice or 8-simplex lattice. The 72 vertices of the expanded 8-simplex vertex figure represent the 72 roots of the _8 Coxeter group. It is the 8-dimensional case of a simplectic honeycomb. Around each vertex figure are 510 facets: 9+9 8-simplex, 36+36 rectified 8-simplex, 84+84 birectified 8-simplex, 126+126 trirectified 8-simplex, with the count distribution from the 10th row of Pascal's triangle. _8 contains _8 as a subgroup of index 5760. Both _8 and _8 can be seen as affine extensions of A_8 from different nodes: The A lattice is the union of three A8 lattices, and also identical to the E8 la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform 8-honeycomb
In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope Ridge (geometry), ridge being shared by exactly two 8-polytope Facet (mathematics), facets. A uniform 9-polytope is one which is vertex-transitive, and constructed from uniform 8-polytope Facet (geometry), facets. Regular 9-polytopes Regular 9-polytopes can be represented by the Schläfli symbol , with w 8-polytope Facet (mathematics), facets around each Peak (geometry), peak. There are exactly three such List of regular polytopes#Convex 4, convex regular 9-polytopes: # - 9-simplex # - 9-cube # - 9-orthoplex There are no nonconvex regular 9-polytopes. Euler characteristic The topology of any given 9-polytope is defined by its Betti numbers and torsion coefficient (topology), torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

7-simplex T2
In 7-dimensional geometry, a 7- simplex is a self-dual regular 7-polytope. It has 8 vertices, 28 edges, 56 triangle faces, 70 tetrahedral cells, 56 5-cell 5-faces, 28 5-simplex 6-faces, and 8 6-simplex 7-faces. Its dihedral angle is cos−1(1/7), or approximately 81.79°. Alternate names It can also be called an octaexon, or octa-7-tope, as an 8- facetted polytope in 7-dimensions. The name ''octaexon'' is derived from ''octa'' for eight facets in Greek and ''-ex'' for having six-dimensional facets, and ''-on''. Jonathan Bowers gives an octaexon the acronym oca. As a configuration This configuration matrix represents the 7-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex T2
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birectified 5-simplex
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a Rectification (geometry), rectification of the regular 5-simplex. There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the ''rectified 5-simplex'' are located at the edge-centers of the ''5-simplex''. Vertices of the ''birectified 5-simplex'' are located in the triangular face centers of the ''5-simplex''. Rectified 5-simplex In Five-dimensional space, five-dimensional geometry, a rectified 5-simplex is a uniform 5-polytope with 15 vertex (geometry), vertices, 60 Edge (geometry), edges, 80 Triangle, triangular Face (geometry), faces, 45 Cell (geometry), cells (30 Tetrahedron, tetrahedral, and 15 Octahedron, octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as . Emanuel Lodewijk Elte, E. L. Elte identified it in 1912 as a semiregular polytope, labeling i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex T1
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 5-simplex
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex. There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the ''rectified 5-simplex'' are located at the edge-centers of the ''5-simplex''. Vertices of the ''birectified 5-simplex'' are located in the triangular face centers of the ''5-simplex''. Rectified 5-simplex In five-dimensional geometry, a rectified 5-simplex is a uniform 5-polytope with 15 vertices, 60 edges, 80 triangular faces, 45 cells (30 tetrahedral, and 15 octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as . E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. Alternate names * Rectified hexateron (Acronym: rix) (Jonathan Bowers) Coordinates The vertices of the rectified 5-simplex can be more simply positioned on a hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex T0
In five-dimensional geometry, a 5- simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-simplex
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




6-simplex T2
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. Alternate names It can also be called a heptapeton, or hepta-6-tope, as a 7- facetted polytope in 6-dimensions. The name ''heptapeton'' is derived from ''hepta'' for seven facets in Greek and ''-peta'' for having five-dimensional facets, and ''-on''. Jonathan Bowers gives a heptapeton the acronym hop. As a configuration This configuration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \begin\begin7 & 6 & 15 & 20 & 15 & 6 \\ 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birectified 6-simplex
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a Rectification (geometry), rectification of the regular 6-simplex. There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the ''rectified 6-simplex'' are located at the edge-centers of the ''6-simplex''. Vertices of the ''birectified 6-simplex'' are located in the triangular face centers of the ''6-simplex''. Rectified 6-simplex Emanuel Lodewijk Elte, E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as . Alternate names * Rectified heptapeton (Acronym: ril) (Jonathan Bowers) Coordinates The vertices of the ''rectified 6-simplex'' can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on Facet (geometry), facets of the rectified 7-orthoplex. Images Birectified 6-simplex Emanuel Lodew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


6-simplex T1
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. Alternate names It can also be called a heptapeton, or hepta-6-tope, as a 7- facetted polytope in 6-dimensions. The name ''heptapeton'' is derived from ''hepta'' for seven facets in Greek and ''-peta'' for having five-dimensional facets, and ''-on''. Jonathan Bowers gives a heptapeton the acronym hop. As a configuration This configuration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \begin\begin7 & 6 & 15 & 20 & 15 & 6 \\ 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 6-simplex
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a Rectification (geometry), rectification of the regular 6-simplex. There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the ''rectified 6-simplex'' are located at the edge-centers of the ''6-simplex''. Vertices of the ''birectified 6-simplex'' are located in the triangular face centers of the ''6-simplex''. Rectified 6-simplex Emanuel Lodewijk Elte, E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as . Alternate names * Rectified heptapeton (Acronym: ril) (Jonathan Bowers) Coordinates The vertices of the ''rectified 6-simplex'' can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on Facet (geometry), facets of the rectified 7-orthoplex. Images Birectified 6-simplex Emanuel Lodew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]