3DNow!
   HOME
*





3DNow!
3DNow! is a deprecated extension to the x86 instruction set developed by Advanced Micro Devices (AMD). It adds single instruction multiple data (SIMD) instructions to the base x86 instruction set, enabling it to perform vector processing of floating-point vector-operations using Vector registers, which improves the performance of many graphic-intensive applications. The first microprocessor to implement 3DNow was the AMD K6-2, which was introduced in 1998. When the application was appropriate, this raised the speed by about 2–4 times. However, the instruction set never gained much popularity, and AMD announced on August 2010 that support for 3DNow would be dropped in future AMD processors, except for two instructions (the PREFETCH and PREFETCHW instructions). The two instructions are also available in Bay-Trail Intel processors. History 3DNow was developed at a time when 3D graphics were becoming mainstream in PC multimedia and games. Realtime display of 3D graphics depended ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Athlon 64
The Athlon 64 is a ninth-generation, AMD64-architecture microprocessor produced by Advanced Micro Devices (AMD), released on September 23, 2003. It is the third processor to bear the name ''Athlon'', and the immediate successor to the Athlon XP. The second processor (after the Opteron) to implement the AMD64 architecture and the first 64-bit processor targeted at the average consumer, it was AMD's primary consumer CPU, and primarily competed with Intel's Pentium 4, especially the ''Prescott'' and ''Cedar Mill'' core revisions. It is AMD's first K8, eighth-generation processor core for desktop and mobile computers. Despite being natively 64-bit, the AMD64 architecture is backward-compatible with 32-bit x86 instructions. Athlon 64s have been produced for Socket 754, Socket 939, Socket 940, and Socket AM2. The line was succeeded by the dual-core Athlon 64 X2 and Athlon X2 lines. Background The Athlon 64 was originally codenamed ''ClawHammer'' by AMD, and was referred to as such in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD K6-III
The K6-III (code name: "Sharptooth") was an x86 microprocessor line manufactured by AMD that launched on February 22, 1999. The launch consisted of both 400 and 450 MHz models and was based on the preceding K6-2 architecture. Its improved 256 KB on-chip L2 cache gave it significant improvements in system performance over its predecessor the K6-2. The K6-III was the last processor officially released for desktop Socket 7 systems, however later mobile K6-III+ and K6-2+ processors could be run unofficially in certain socket 7 motherboards if an updated BIOS was made available for a given board. The Pentium III processor from Intel launched 6 days later. At its release, the fastest available desktop processor from Intel was the Pentium II 450 MHz, and in integer application benchmarks a 400 MHz K6-III was able to beat it as the fastest processor available for business applications. Just days later on February 26 Intel released the Pentium III "Katmai" line at speeds o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Athlon XP
Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by Advanced Micro Devices (AMD). The original Athlon (now called Athlon Classic) was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz (GHz). It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit (APU) chips targeting the Socket AM1 desktop SoC architecture, and Socket AM4 Zen microarchitecture. The modern Zen-based Athlon with a Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor. Athlon comes from the Ancient Greek (''athlon''), meaning "(sport) contest", or "prize of a contest", or "place of a contest; arena". With the Athlon name originally used for AMD's high-end processors, AMD currently uses Athlon fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Athlon
Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by Advanced Micro Devices (AMD). The original Athlon (now called Athlon Classic) was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz (GHz). It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit (APU) chips targeting the Socket AM1 desktop System on a chip, SoC architecture, and Socket AM4 Zen microarchitecture. The modern Zen-based Athlon with a Radeon, Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor. Athlon comes from the Ancient Greek (''athlon''), meaning "(sport) contest", or "prize of a contest", or "place of a contest; arena". With the Athlon name originally used for AMD's high-end processors, AMD ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Winchip
The WinChip series was a low-power Socket 7-based x86 processor designed by Centaur Technology and marketed by its parent company IDT. Overview Design The design of the WinChip was quite different from other processors of the time. Instead of a large gate count and die area, IDT, using its experience from the RISC processor market, created a small and electrically efficient processor similar to the 80486, because of its single pipeline and in-order execution microarchitecture. It was of much simpler design than its Socket 7 competitors, such as AMD K5/ K6, which were superscalar and based on ''dynamic'' translation to buffered micro-operations with advanced instruction reordering (out of order execution). Use WinChip was, in general, designed to perform well with popular applications that did few (if any) floating point calculations. This included operating systems of the time and the majority of software used in businesses. It was also designed to be a drop-in replacement fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K6-2
The K6-2 is an x86 microprocessor introduced by AMD on May 28, 1998, and available in speeds ranging from 266 to 550 MHz. An enhancement of the original K6, the K6-2 introduced AMD's 3DNow! SIMD instruction set, featured a larger 64 KiB Level 1 cache (32 KiB instruction and 32 KiB data), and an upgraded system-bus interface called Super Socket 7, which was backward compatible with older Socket 7 motherboards. It was manufactured using a 0.25 micrometre process, ran at 2.2 volts, and had 9.3 million transistors. History The K6-2 was designed as a competitor to Intel's flagship processor, the significantly more expensive Pentium II. Performance of the two chips was similar: the previous K6 tended to be faster for general-purpose computing, while the Intel part was faster in x87 floating-point applications. To battle the Pentium 2's dominance on floating point calculations the K6-2 was the first CPU to introduce a floating point SIMD instruction set (dubbed 3DNow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD K6-2
The K6-2 is an x86 microprocessor introduced by AMD on May 28, 1998, and available in speeds ranging from 266 to 550 MHz. An enhancement of the original K6, the K6-2 introduced AMD's 3DNow! SIMD instruction set, featured a larger 64 KiB Level 1 cache (32 KiB instruction and 32 KiB data), and an upgraded system-bus interface called Super Socket 7, which was backward compatible with older Socket 7 motherboards. It was manufactured using a 0.25 micrometre process, ran at 2.2 volts, and had 9.3 million transistors. History The K6-2 was designed as a competitor to Intel's flagship processor, the significantly more expensive Pentium II. Performance of the two chips was similar: the previous K6 tended to be faster for general-purpose computing, while the Intel part was faster in x87 floating-point applications. To battle the Pentium 2's dominance on floating point calculations the K6-2 was the first CPU to introduce a floating point SIMD instruction set (dubbed 3DN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geode (processor)
Geode was a series of x86-compatible system-on-a-chip microprocessors and I/O companions produced by AMD, targeted at the embedded computing market. The series was originally launched by National Semiconductor as the Geode family in 1999. The original Geode processor core itself is derived from the Cyrix MediaGX platform, which was acquired in National's merger with Cyrix in 1997. AMD bought the Geode business from National in August 2003 to augment its existing line of embedded x86 processor products. AMD expanded the Geode series to two classes of processor: the MediaGX-derived Geode GX and LX, and the modern Athlon-derived Geode NX. Geode processors are optimized for low power consumption and low cost while still remaining compatible with software written for the x86 platform. The MediaGX-derived processors lack modern features such as SSE and a large on-die L1 cache but these are offered on the more recent Athlon-derived Geode NX. Geode processors tightly integrate some of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MMX (instruction Set)
MMX is a ''single instruction, multiple data'' (SIMD) instruction set architecture designed by Intel, introduced on January 8, 1997 with its Pentium P5 (microarchitecture) based line of microprocessors, named "Pentium with MMX Technology". It developed out of a similar unit introduced on the Intel i860, and earlier the Intel i750 video pixel processor. MMX is a processor supplementary capability that is supported on IA-32 processors by Intel and other vendors . The New York Times described the initial push, including Super Bowl advertisements, as focused on "a new generation of glitzy multimedia products, including videophones and 3-D video games." MMX has subsequently been extended by several programs by Intel and others: 3DNow!, Streaming SIMD Extensions (SSE), and ongoing revisions of Advanced Vector Extensions (AVX). Overview Naming MMX is officially a meaningless initialism trademarked by Intel; unofficially, the initials have been variously explained as standing for * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SIMD
Single instruction, multiple data (SIMD) is a type of parallel processing in Flynn's taxonomy. SIMD can be internal (part of the hardware design) and it can be directly accessible through an instruction set architecture (ISA), but it should not be confused with an ISA. SIMD describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously. Such machines exploit data level parallelism, but not concurrency: there are simultaneous (parallel) computations, but each unit performs the exact same instruction at any given moment (just with different data). SIMD is particularly applicable to common tasks such as adjusting the contrast in a digital image or adjusting the volume of digital audio. Most modern CPU designs include SIMD instructions to improve the performance of multimedia use. SIMD has three different subcategories in Flynn's 1972 Taxonomy, one of which is SIMT. SIMT should not be confused with software thr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Streaming SIMD Extensions
In computing, Streaming SIMD Extensions (SSE) is a single instruction, multiple data (SIMD) instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series of Central processing units (CPUs) shortly after the appearance of Advanced Micro Devices (AMD's) 3DNow!. SSE contains 70 new instructions (65 unique mnemonics using 70 encodings), most of which work on single precision floating-point data. SIMD instructions can greatly increase performance when exactly the same operations are to be performed on multiple data objects. Typical applications are digital signal processing and graphics processing. Intel's first IA-32 SIMD effort was the MMX instruction set. MMX had two main problems: it re-used existing x87 floating-point registers making the CPUs unable to work on both floating-point and SIMD data at the same time, and it only worked on integers. SSE floating-point instructions operate on a new independent register set, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

VIA C3
The VIA C3 is a family of x86 central processing units for personal computers designed by Centaur Technology and sold by VIA Technologies. The different CPU cores are built following the design methodology of Centaur Technology. In addition to x86 instructions, VIA C3 CPUs contain an undocumented Alternate Instruction Set allowing lower-level access to the CPU and in some cases privilege escalation. Cores Samuel 2 and Ezra cores VIA Cyrix III was renamed VIA C3 with the switch to the advanced "Samuel 2" (C5B) core. The addition of an on-die L2 cache improved performance somewhat. As it was not built upon Cyrix technology at all, the new name was just a logical step. To improve power consumption and reduce manufacturing costs, Samuel 2 was produced with 150 nm process technology. The VIA C3 processor continued an emphasis on minimizing power consumption with the next die shrink to a mixed 130/150 nm process. "Ezra" (C5C) and "Ezra-T" (C5N) were only new revisions o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]