32,767
30,000 (thirty thousand) is the natural number that comes after 29,999 and before 30,001. Selected numbers in the range 30001–39999 30001 to 30999 * 30029 = primorial prime * 30030 = primorial * 30031 = smallest composite number which is one more than a primorial * 30203 = safe prime * 30240 = harmonic divisor number, smallest 4-perfect number * 30323 = Sophie Germain prime and safe prime * 30420 = pentagonal pyramidal number * 30537 = Riordan number * 30694 = open meandric number * 30941 = first base 13 repunit prime 31000 to 31999 * 31116 = octahedral number * 31185 = number of partitions of 39 * 31337 = cousin prime, pronounced ''elite'', an alternate way to spell ''1337'', an obfuscated alphabet made with numbers and punctuation, known and used in the gamer, hacker, and BBS cultures. * 31395 = square pyramidal number * 31397 = prime number followed by a record prime gap of 72, the first greater than 52 * 31688 = the number of years approximately equal to 1 trillion second ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer (computer Science)
In computer science, an integer is a datum of integral data type, a data type that represents some interval (mathematics), range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor word size, register or memory address as an integer. Value and representation The ''value'' of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be ''unsigned'' (capable of representing only non-negative integers) or ''signed'' (capable of representing negative integers as well). An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Gap
A prime gap is the difference between two successive prime numbers. The ''n''-th prime gap, denoted ''g''''n'' or ''g''(''p''''n'') is the difference between the (''n'' + 1)-st and the ''n''-th prime numbers, i.e., :g_n = p_ - p_n. We have ''g''1 = 1, ''g''2 = ''g''3 = 2, and ''g''4 = 4. The sequence (''g''''n'') of prime gaps has been extensively studied; however, many questions and conjectures remain unanswered. The first 60 prime gaps are: :1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, ... . By the definition of ''g''''n'' every prime can be written as :p_ = 2 + \sum_^n g_i. Simple observations The first, smallest, and only odd prime gap is the gap of size 1 between 2, the only even prime number, and 3, the first odd prime. All other prime gaps are even. There is only one pair of consecutive gaps having length 2: the gap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ounce
The ounce () is any of several different units of mass, weight, or volume and is derived almost unchanged from the , an Ancient Roman unit of measurement. The avoirdupois ounce (exactly ) is avoirdupois pound; this is the United States customary and British imperial ounce. It is primarily used in the United States. Although the avoirdupois ounce is the mass measure used for most purposes, the ' troy ounce' of exactly is used instead for the mass of precious metals such as gold, silver, platinum, palladium, rhodium, etc. The term 'ounce' is also used in other contexts: * The ounce-force is a measure of force (see below). * The fluid ounce is a measure of volume. Historically, a variety of different ounces measuring mass or volume were used in different jurisdictions by different trades and at different times in history. Etymology ''Ounce'' derives from the Ancient Roman (meaning: a twelfth), a unit in the Ancient Roman units of measurement weighing about 27 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Count Von Count
Count von Count (known simply as the Count) is a Muppet character on the PBS/HBO children's television show ''Sesame Street.'' He is meant to parody Bela Lugosi's vampiric character, Count Dracula. His first appearance on the show was in the 4th season premiere in 1972, where he counts blocks in a sketch with Bert and Ernie. Description and personality The Count's main role is to teach counting skills to children. His catchphrase is, "Greetings! I am The Count. They call me the Count because I love to count... things". The Count loves counting so much that he will often count anything and everything regardless of size or amount, to the point of annoying other characters. The Count can occasionally lose his temper if interrupted while counting, or feel sad when there is nothing around for him to count. Apart from these, he is typically portrayed as friendly and cheerful. Once he reaches the total number of items he is counting, thunderstorms roll (even indoors or on sunny day ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
A283877
A, or a, is the first letter and the first vowel letter of the Latin alphabet, used in the modern English alphabet, and others worldwide. Its name in English is '' a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient Greek letter alpha, from which it derives. The uppercase version consists of the two slanting sides of a triangle, crossed in the middle by a horizontal bar. The lowercase version is often written in one of two forms: the double-storey and single-storey . The latter is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children, and is also found in italic type. In English, '' a'' is the indefinite article, with the alternative form ''an''. Name In English, the name of the letter is the ''long A'' sound, pronounced . Its name in most other languages matches the letter's pronunciation in open syllables. History The earliest known ancestor of A is ''aleph''—the first letter of the Phoenician ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superfactorial
In mathematics, and more specifically number theory, the superfactorial of a positive integer n is the product of the first n factorials. They are a special case of the Jordan–Pólya numbers, which are products of arbitrary collections of factorials. Definition The nth superfactorial \mathit(n) may be defined as: \begin \mathit(n) &= 1!\cdot 2!\cdot \cdots n! = \prod_^ i! = n!\cdot\mathit(n-1)\\ &= 1^n \cdot 2^ \cdot \cdots n = \prod_^ i^.\\ \end Following the usual convention for the empty product, the superfactorial of 0 is 1. The sequence of superfactorials, beginning with \mathit(0)=1, is: Properties Just as the factorials can be continuously interpolated by the gamma function, the superfactorials can be continuously interpolated by the Barnes G-function. According to an analogue of Wilson's theorem on the behavior of factorials modulo prime numbers, when p is an odd prime number \mathit(p-1)\equiv(p-1)!!\pmod, where !! is the notation for the double factorial. For e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Repdigit
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system (often implicitly decimal). The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes (which are repdigits when represented in binary). Any such number can be represented as follows \underbrace_ = \frac Where nn is the concatenation of n with n. k the number of concatenated n. nn can be represented mathematically as n\cdot\left(10^+1\right) for n = 23 and k = 5, the formula will look like this \frac = \frac = \underbrace_ However, 2323232323 is not a repdigit. Also, any number can be decomposed into the sum and difference of the repdigit numbers. For example 3453455634 = 3333333333 + (111111111 + (99999 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leyland Number
In number theory, a Leyland number is a number of the form :x^y + y^x where ''x'' and ''y'' are integers greater than 1. They are named after the mathematician Paul Leyland. The first few Leyland numbers are : 8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124 . The requirement that ''x'' and ''y'' both be greater than 1 is important, since without it every positive integer would be a Leyland number of the form ''x''1 + 1''x''. Also, because of the commutative property of addition, the condition ''x'' ≥ ''y'' is usually added to avoid double-covering the set of Leyland numbers (so we have 1 < ''y'' ≤ ''x''). Leyland primes A Leyland prime is a Leyland number that is . The first such primes are: : 17,[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, Ju ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two's Complement
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. Two's complement uses the binary digit with the ''greatest'' value as the ''sign'' to indicate whether the binary number is positive or negative; when the most significant bit is ''1'' the number is signed as negative and when the most significant bit is ''0'' the number is signed as positive. As a result, non-negative numbers are represented as themselves: 6 is 0110, zero is 0000, and −6 is 1010 (the result of applying the bitwise NOT operator to 6 and adding 1). However, while the number of binary bits is fixed throughout a computation it is otherwise arbitrary. Unlike the ones' complement scheme, the two's complement scheme has only one representation for zero. Furthermore, arithmetic implementations can be used on signed as well as unsigned integers and differ only in the integer overflow situations. Proce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Centered Hexagonal Number
In mathematics and combinatorics, a centered hexagonal number, or centered hexagon number, is a centered polygonal number, centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. The following figures illustrate this arrangement for the first four centered hexagonal numbers: : Centered hexagonal numbers should not be confused with hexagonal number, cornered hexagonal numbers, which are figurate numbers in which the associated hexagons share a vertex. The sequence of hexagonal numbers starts out as follows : :1, 7, 19 (number), 19, 37 (number), 37, 61 (number), 61, 91 (number), 91, 127 (number), 127, 169 (number), 169, 217 (number), 217, 271 (number), 271, 331 (number), 331, 397 (number), 397, 469, 547, 631, 721, 817, 919. Formula The th centered hexagonal number is given by the formula :H(n) = n^3 - (n-1)^3 = 3n(n-1)+1 = 3n^2 - 3n +1. \, Expressing the formula as :H(n) = 1+6\left(\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |