3-group
   HOME
*





3-group
In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integer ''n'' such that the product of ''pn'' copies of ''g'', and not fewer, is equal to the identity element. The orders of different elements may be different powers of ''p''. Abelian ''p''-groups are also called ''p''-primary or simply primary. A finite group is a ''p''-group if and only if its order (the number of its elements) is a power of ''p''. Given a finite group ''G'', the Sylow theorems guarantee the existence of a subgroup of ''G'' of order ''pn'' for every prime power ''pn'' that divides the order of ''G''. Every finite ''p''-group is nilpotent. The remainder of this article deals with finite ''p''-groups. For an example of an infinite abelian ''p''-group, see Prüfer group, and for an example of an infinite simple ''p''-g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tarski Monster Group
In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group ''G'', such that every proper subgroup ''H'' of ''G'', other than the identity subgroup, is a cyclic group of order a fixed prime number ''p''. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski ''p''-group for every prime ''p'' > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture. Definition Let p be a fixed prime number. An infinite group G is called a Tarski monster group for p if every nontrivial subgroup (i.e. every subgroup other than 1 and G itself) has p elements. Properties * G is necessarily finitely generated. In fact it is generated by every two non-commuting elements. * G is simple. If N\trianglelefteq G and U\leq G is any subgroup distinct from N the su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nilpotent Group
In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, its central series is of finite length or its lower central series terminates with . Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov. Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups. Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent, lower central series, and upper central series. Definition The definition uses the idea of a central series for a group. The followi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterexample
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is a counterexample to the generalization “students are lazy”, and both a counterexample to, and disproof of, the universal quantification “all students are lazy.” In mathematics, the term "counterexample" is also used (by a slight abuse) to refer to examples which illustrate the necessity of the full hypothesis of a theorem. This is most often done by considering a case where a part of the hypothesis is not satisfied and the conclusion of the theorem does not hold. In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectures t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proper Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normalizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', or equivalently, such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and normaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^. for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \operatorna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Center (group Theory)
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is always ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Class Equation
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^. for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial Group
In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: 0, 1, or e depending on the context. If the group operation is denoted \, \cdot \, then it is defined by e \cdot e = e. The similarly defined is also a group since its only element is its own inverse, and is hence the same as the trivial group. The trivial group is distinct from the empty set, which has no elements, hence lacks an identity element, and so cannot be a group. Definitions Given any group G, the group consisting of only the identity element is a subgroup of G, and, being the trivial group, is called the of G. The term, when referred to "G has no nontrivial proper subgroups" refers to the only subgroups of G being the trivial group \ and the group G itself. Properties The trivial group is cyclic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Center Of A Group
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is always ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correspondence Theorem (group Theory)
In group theory, the correspondence theorem (also the lattice theorem,W.R. Scott: ''Group Theory'', Prentice Hall, 1964, p. 27. and variously and ambiguously the third and fourth isomorphism theorem ) states that if N is a normal subgroup of a group G, then there exists a bijection from the set of all subgroups A of G containing N, onto the set of all subgroups of the quotient group G/N. The structure of the subgroups of G/N is exactly the same as the structure of the subgroups of G containing N, with N collapsed to the identity element. Specifically, if : ''G'' is a group, : N \triangleleft G, a normal subgroup of ''G'', : \mathcal = \, the set of all subgroups ''A'' of ''G'' that contain ''N'', and : \mathcal = \, the set of all subgroups of ''G''/''N'', then there is a bijective map \phi: \mathcal \to \mathcal such that : \phi(A) = A/N for all A \in \mathcal. One further has that if ''A'' and ''B'' are in \mathcal then * A \subseteq B if and only if A/N \subseteq B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]