HOME



picture info

2SAT
In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time. Instances of the 2-satisfiability problem are typically expressed as Boolean formulas of a special type, called conjunctive normal form (2-CNF) or Krom formulas. Alternatively, they may be expressed as a special type of directed graph, the implication graph, which expresses the variables of an instance and their negations as vertices in a graph, and constraints on pairs of variables as directed edges. Both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unique Games Conjecture
In computational complexity theory, the unique games conjecture (often referred to as UGC) is a conjecture made by Subhash Khot in 2002. The conjecture postulates that the problem of determining the approximate ''value'' of a certain type of game, known as a ''unique game'', has NP-hard computational complexity. It has broad applications in the theory of hardness of approximation. If the unique games conjecture is true and P ≠ NP,The unique games conjecture is vacuously true if P = NP, as then every problem in NP would also be NP-hard. then for many important problems it is not only impossible to get an exact solution in polynomial time (as postulated by the P versus NP problem), but also impossible to get a good polynomial-time approximation. The problems for which such an inapproximability result would hold include constraint satisfaction problems, which crop up in a wide variety of disciplines. The conjecture is unusual in that the academic world ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Satisfiability Problem
In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) asks whether there exists an Interpretation (logic), interpretation that Satisfiability, satisfies a given Boolean logic, Boolean Formula (mathematical logic), formula. In other words, it asks whether the formula's variables can be consistently replaced by the values TRUE or FALSE to make the formula evaluate to TRUE. If this is the case, the formula is called ''satisfiable'', else ''unsatisfiable''. For example, the formula "''a'' AND NOT ''b''" is satisfiable because one can find the values ''a'' = TRUE and ''b'' = FALSE, which make (''a'' AND NOT ''b'') = TRUE. In contrast, "''a'' AND NOT ''a''" is unsatisfiable. SAT is the first problem that was proven to be NP-complete—this is the Cook–Levin theorem. This means that all problems in the complexity class NP (complexity), NP, which includes a wide range of natu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NL-complete
In computational complexity theory, NL-complete is a complexity class containing the languages that are complete for NL, the class of decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. The NL-complete languages are the most "difficult" or "expressive" problems in NL. If a deterministic algorithm exists for solving any one of the NL-complete problems in logarithmic memory space, then NL = L. Definitions NL consists of the decision problems that can be solved by a nondeterministic Turing machine with a read-only input tape and a separate read-write tape whose size is limited to be proportional to the logarithm of the input length. Similarly, L consists of the languages that can be solved by a deterministic Turing machine with the same assumptions about tape length. Because there are only a polynomial number of distinct configurations of these machines, both L and NL are subsets of the class P of determin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of California, Davis
The University of California, Davis (UC Davis, UCD, or Davis) is a Public university, public Land-grant university, land-grant research university in Davis, California, United States. It is the northernmost of the ten campuses of the University of California system. The institution was first founded as an Agriculture, agricultural branch of the system in 1905 and became the sixth campus of the University of California in 1959. Founded as a primarily agricultural campus, the university has expanded over the past century to include graduate and professional programs in UC Davis School of Medicine, medicine (which includes the UC Davis Medical Center), UC Davis College of Engineering, engineering, UC Davis College of Letters and Science, science, UC Davis School of Law, law, UC Davis School of Veterinary Medicine, veterinary medicine, UC Davis School of Education, education, Betty Irene Moore School of Nursing, nursing, and UC Davis Graduate School of Management, business managemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Assignment
An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation. In these contexts an interpretation is a function that provides the extension of symbols and strings of an object language. For example, an interpretation function could take the predicate symbol T and assign it the extension \. All our interpretation does is assign the extension \ to the non-logical symbol T, and does not make a claim about whether T is to stand for tall and \mathrm for Abraham Lincoln. On the other hand, an interpretation do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Literal (mathematical Logic)
Literal may refer to: * Interpretation of legal concepts: ** Strict constructionism ** The plain meaning rule (a.k.a. "literal rule") * Literal (mathematical logic), certain logical roles taken by propositions * Literal (computer programming), a fixed value in a program's source code * Biblical literalism * Titled works: ** Literal (magazine), ''Literal'' (magazine) ** Three-issue series Fables (comics)#The Literals, ''The Literals'', in ''Fables'' comics franchise See also

* Literal and figurative language * Literal translation * Literalism (other) * Littoral (other) * ''Literally'', English adverb {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clause (logic)
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives. A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term). That is, it is a finite disjunction or conjunction of literals, depending on the context. Clauses are usually written as follows, where the symbols l_i are literals: :l_1 \vee \cdots \vee l_n Empty clauses A clause can be empty (defined from an empty set of literals). The empty clause is denoted by various symbols such as \empty, \bot, or \Box. The truth evaluation of an empty disjunctive clause is always false. This is justified by considering that false is the neutral element of the monoid (\, \vee). The truth evaluation of an empty conjunctive clause is always true. This is related to the conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boolean Expression
In computer science, a Boolean expression (also known as logical expression) is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants True/False or Yes/No, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. Boolean expressions correspond to propositional formulas in logic and are associated to Boolean circuits. Boolean operators Most programming languages have the Boolean operators OR, AND and NOT; in C and some languages inspired by it, these are represented by ", , " (double pipe character), "&&" (double ampersand) and "!" ( exclamation point) respectively, while the corresponding bitwise operations are represented by ", ", "&" and "~" (tilde).E.g. for Java see . In the mathematical literature the symbols used are often "+" ( plus), "·" ( dot) and overbar, or "∨" ( vel), "∧" ( et ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Implication Graph
In mathematical logic and graph theory, an implication graph is a skew-symmetric, directed graph composed of vertex set and directed edge set . Each vertex in represents the truth status of a Boolean literal, and each directed edge from vertex to vertex represents the material implication "If the literal is true then the literal is also true". Implication graphs were originally used for analyzing complex Boolean expressions. Applications A 2-satisfiability instance in conjunctive normal form can be transformed into an implication graph by replacing each of its disjunctions by a pair of implications. For example, the statement (x_0\lor x_1) can be rewritten as the pair (\neg x_0 \rightarrow x_1), (\neg x_1 \rightarrow x_0). An instance is satisfiable if and only if no literal and its negation belong to the same strongly connected component of its implication graph; this characterization can be used to solve instances in linear time. In CDCL SAT-solvers, unit propaga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]