In
mathematical logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of for ...
, a literal is an
atomic formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformu ...
(also known as an atom or prime formula) or its
negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
.
The definition mostly appears in
proof theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four correspo ...
(of
classical logic
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.
Characteristics
Each logical system in this class ...
), e.g. in
conjunctive normal form
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a can ...
and the method of
resolution
Resolution(s) may refer to:
Common meanings
* Resolution (debate), the statement which is debated in policy debate
* Resolution (law), a written motion adopted by a deliberative body
* New Year's resolution, a commitment that an individual mak ...
.
Literals can be divided into two types:
[
* A positive literal is just an atom (e.g., ).
* A negative literal is the negation of an atom (e.g., ).
The polarity of a literal is positive or negative depending on whether it is a positive or negative literal.
In logics with ]double negation elimination
In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition ''A'' is logically equivalent to ''not (not ...
(where ) the complementary literal or complement of a literal can be defined as the literal corresponding to the negation of . We can write to denote the complementary literal of . More precisely, if then is and if then is . Double negation elimination occurs in classical logics but not in intuitionistic logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems ...
.
In the context of a formula in the conjunctive normal form
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a can ...
, a literal is pure if the literal's complement does not appear in the formula.
In Boolean function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function ( ...
s, each separate occurrence of a variable, either in inverse or uncomplemented form, is a literal. For example, if , and are variables then the expression contains three literals and the expression contains four literals. However, the expression would also be said to contain four literals, because although two of the literals are identical ( appears twice) these qualify as two separate occurrences.
Examples
In propositional calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations b ...
a literal is simply a propositional variable
In mathematical logic, a propositional variable (also called a sentential variable or sentential letter) is an input variable (that can either be true or false) of a truth function. Propositional variables are the basic building-blocks of propositi ...
or its negation.
In predicate calculus
Predicate or predication may refer to:
* Predicate (grammar), in linguistics
* Predication (philosophy)
* several closely related uses in mathematics and formal logic:
**Predicate (mathematical logic)
**Propositional function
**Finitary relation, o ...
a literal is an atomic formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformu ...
or its negation, where an atomic formula is a predicate
Predicate or predication may refer to:
* Predicate (grammar), in linguistics
* Predication (philosophy)
* several closely related uses in mathematics and formal logic:
**Predicate (mathematical logic)
**Propositional function
**Finitary relation, o ...
symbol applied to some terms, with the terms recursively defined starting from constant symbols, variable symbols, and function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
symbols. For example, is a negative literal with the constant symbol 2, the variable symbols ''x'', ''y'', the function symbols ''f'', ''g'', and the predicate symbol ''Q''.
References
*{{cite book , last=Buss , first=Samuel R. , editor-last=Buss , editor-first=Samuel R. , date=1998 , title=An Introduction to Proof Theory , work=Handbook of Proof Theory , url=http://math.ucsd.edu/~sbuss/ResearchWeb/handbookI/ , publisher=Elsevier , isbn=0-444-89840-9 , pages=1–78
Mathematical logic
Propositional calculus
Logic symbols