149 (number)
149 (one hundred [and] forty-nine) is the natural number between 148 (number), 148 and 150 (number), 150. In mathematics 149 is a prime number, the first prime whose difference from the previous prime is exactly 10, an emirp, and an irregular prime. After 1 and 127, it is the third smallest de Polignac number, an odd number that cannot be represented as a prime plus a power of two. More strongly, after 1, it is the second smallest number that is not a sum of two prime powers. It is a tribonacci number, being the sum of the three preceding terms, 24, 44, 81. There are exactly 149 integer points in a closed circular disk of radius 7, and exactly 149 ways of placing six queens (the maximum possible) on a 5 × 5 chess board so that each queen attacks exactly one other. The barycentric subdivision of a tetrahedron produces an abstract simplicial complex with exactly 149 simplices. See also * The year AD 149 or 149 BC * List of highways numbered 149 * References Externa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
148 (number)
148 (one hundred ndforty-eight) is the natural number following 147 and before 149. In mathematics 148 is the second number to be both a heptagonal number and a centered heptagonal number (the first is 1). It is the twelfth member of the Mian–Chowla sequence, the lexicographically smallest sequence of distinct positive integers with distinct pairwise sums. There are 148 perfect graphs with six vertices, and 148 ways of partitioning four people into subsets, ordering the subsets, and selecting a leader for each subset. In other fields In the Book of Nehemiah 7:44 there are 148 singers, sons of Asaph, at the census of men of Israel upon return from exile. This differs from Ezra 2:41, where the number is given as 128. Dunbar's number is a theoretical cognitive limit to the number of people with whom one can maintain stable interpersonal relationships. Dunbar predicted a "mean group size" of 148, but this is commonly rounded to 150. See also * The year AD 148 or 148 BC _ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
150 (number)
150 (one hundred ndfifty) is the natural number following 149 and preceding 151. In mathematics *150 is the sum of eight consecutive primes (7 + 11 + 13 + 17 + 19 + 23 + 29 + 31). Given 150, the Mertens function returns 0. *150 is conjectured to be the only minimal difference greater than 1 of any increasing arithmetic progression of n primes (in this case, n = 7) that is not a primorial (a product of the first m primes). *The sum of Euler's totient function φ(''x'') over the first twenty-two integers is 150. *150 is a Harshad number and an abundant number. *150 degrees is the measure of the internal angle of a regular dodecagon. In the Bible * The last numbered Psalm in the Bible, Psalm 150, considered the one most often set to music. * The number of sons of Ulam, who were combat archers, in the Census of the men of Israel upon return from exile (I Chronicles 8:40) * In the Book of Genesis, the number of days the waters from the Great Flood persisted on the Earth befor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emirp
An emirp (''prime'' spelled backwards) is a prime number that results in a different prime when its decimal digits are reversed. This definition excludes the related palindromic primes. The term ''reversible prime'' is used to mean the same as emirp, but may also, ambiguously, include the palindromic primes. The sequence of emirps begins 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991, ... . All non-palindromic permutable primes are emirps. , the largest known emirp is 1010006+941992101×104999+1, found by Jens Kruse Andersen in October 2007. The term 'emirpimes' (singular) is used also in places to treat semiprimes in a similar way. That is, an emirpimes is a semiprime that is also a (distinct) semiprime upon reversing its digits. It is an open problem whether there are infinitely many emirps. Other bases The emirps in base 12 are (using rotated ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irregular Prime
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: : 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . History and motivation In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent ''p'' if ''p'' is regular. This focused attention on the irregular primes. In 1852, Genocchi was able to prove that the first case of Fermat's Last Theorem is true for an exponent ''p'', if is not an irregular pair. Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either or fails to be an irregular pair. Kummer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crelle's Journal
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Rainer Weissauer (Ruprecht-Karls-Universität Heidelberg) Past editors * 1826–1856 August Leopold Crelle * 1856–1880 Carl Wilhelm Borchardt * 1881–1888 Leopold Kronecker, Karl Weierstrass * 1889–1892 Leopold Kronecker * 1892–1902 Lazarus Fuchs * 1903–1928 Kurt Hens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Polignac Number
In mathematics, a Riesel number is an odd natural number ''k'' for which k\times2^n-1 is composite for all natural numbers ''n'' . In other words, when ''k'' is a Riesel number, all members of the following set are composite: :\left\. If the form is instead k\times2^n+1, then ''k'' is a Sierpinski number. Riesel Problem In 1956, Hans Riesel showed that there are an infinite number of integers ''k'' such that k\times2^n-1 is not prime for any integer ''n''. He showed that the number 509203 has this property, as does 509203 plus any positive integer multiple of 11184810. The Riesel problem consists in determining the smallest Riesel number. Because no covering set has been found for any ''k'' less than 509203, it is conjectured to be the smallest Riesel number. To check if there are ''k'' ''k'') :2, 3, 3, 39, 4, 4, 4, 5, 6, 5, 5, 6, 5, 5, 5, 7, 6, 6, 11, 7, 6, 29, 6, 6, 7, 6, 6, 7, 6, 6, 6, 8, 8, 7, 7, 10, 9, 7, 8, 9, 7, 8, 7, 7, 8, 7, 8, 10, 7, 7, 26, 9, 7, 8, 7, 7, 10, 7 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer as the exponent. In a context where only integers are considered, is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100...000 or 0.00...001, just like a power of 10 in the decimal system. Computer science Two to the exponent of , written as , is the number of ways the bits in a binary word of length can be arranged. A word, interpreted as an unsigned integer, can represent values from 0 () to () inclusively. Corresponding signed integer values can be positive, negative and zero; see signed n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (i.e. the group of units of the ring Z/''p''''n''Z) is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tribonacci Number
In mathematics, the Fibonacci numbers form a sequence defined recursion, recursively by: :F_n = \begin 0 & n = 0 \\ 1 & n = 1 \\ F_ + F_ & n > 1 \end That is, after two starting values, each number is the sum of the two preceding numbers. The Fibonacci sequence has been studied extensively and generalized in many ways, for example, by starting with other numbers than 0 and 1, by adding more than two numbers to generate the next number, or by adding objects other than numbers. Extension to negative integers Using F_ = F_n - F_, one can extend the Fibonacci numbers to negative integers. So we get: :... −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, ... and F_ = (-1)^ F_n. See also NegaFibonacci coding. Extension to all real or complex numbers There are a number of possible generalizations of the Fibonacci numbers which include the real numbers (and sometimes the complex numbers) in their domain. These each involve the golden ratio , and are based on Binet's formula :F_n = \frac. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Fibonacci Quarterly
The ''Fibonacci Quarterly'' is a scientific journal on mathematical topics related to the Fibonacci numbers, published four times per year. It is the primary publication of The Fibonacci Association, which has published it since 1963. Its founding editors were Verner Emil Hoggatt Jr. and Alfred Brousseau; by Clark Kimberling the present editor is Professor Curtis Cooper of the Mathematics Department of the . The ''Fibonacci Quarterly'' has an editorial board of nineteen members and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |