HOME
*





1-bromohexane
} 1-Bromohexane is organobromine compound with formula Br(CH2)5CH3. It is a colorless liquid. Synthesis and reactions Most 1-bromoalkanes are prepared by free-radical addition of hydrogen bromide to the 1-alkene. These conditions lead to anti-Markovnikov addition, giving the 1-bromo derivative. 1-Bromohexane undergoes reactions expected of simple alkyl bromides. It can form Grignard reagents. It reacts with potassium fluoride to give the corresponding fluorocarbons. See also * Bromoalkane Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane. One prominent application of synthetic organobromine compounds is the u ...s * Bromocyclohexane References {{DEFAULTSORT:Bromohexane, 1- Bromoalkanes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intraperitoneal
The peritoneum is the serous membrane forming the lining of the abdominal cavity or coelom in amniotes and some invertebrates, such as annelids. It covers most of the intra-abdominal (or coelomic) organs, and is composed of a layer of mesothelium supported by a thin layer of connective tissue. This peritoneal lining of the cavity supports many of the abdominal organs and serves as a conduit for their blood vessels, lymphatic vessels, and nerves. The abdominal cavity (the space bounded by the vertebrae, abdominal muscles, diaphragm, and pelvic floor) is different from the intraperitoneal space (located within the abdominal cavity but wrapped in peritoneum). The structures within the intraperitoneal space are called "intraperitoneal" (e.g., the stomach and intestines), the structures in the abdominal cavity that are located behind the intraperitoneal space are called "retroperitoneal" (e.g., the kidneys), and those structures below the intraperitoneal space are called "subperito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1-Bromobutane
1-Bromobutane is the organobromine compound with the formula CH3(CH2)3Br. It is a colorless liquid, although impure samples appear yellowish. It is insoluble in water, but soluble in organic solvents. It is a primarily used as a source of the butyl group in organic synthesis. It is one of several isomers of butyl bromide. Synthesis Most 1-bromoalkanes are prepared by free-radical addition of hydrogen bromide to the 1-alkene. These conditions lead to the anti-Markovnikov addition, i.e. give the 1-bromo derivatives. 1-Bromobutane can also be prepared from butanol by treatment with hydrobromic acid: :CH3(CH2)3OH + HBr → CH3(CH2)3Br + H2O Reactions As a primary haloalkane, it is prone to SN2 type reactions. It is commonly used as an alkylating agent. When combined with magnesium metal in dry ether, it gives the corresponding Grignard reagent A Grignard reagent or Grignard compound is a chemical compound with the general formula , where X is a halogen and R is an orga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2-Bromobutane
2-Bromobutane is an isomer of 1-Bromobutane, 1-bromobutane. Both compounds share the molecular formula C4H9Br. 2-Bromobutane is also known as ''sec''-butyl bromide or methylethylbromomethane. Because it contains bromine, a halogen, it is part of a larger class of compounds known as alkyl halides. It is a colorless liquid with a pleasant odor. Because the carbon atom connected to the bromine is connected to two other carbons the molecule is referred to as a secondary alkyl halide. 2-Bromobutane is Chirality (chemistry), chiral and thus can be obtained as either of two Enantiomer, enantiomers designated as (''R'')-(−)-2-bromobutane and (''S'')-(+)-2-bromobutane. 2-Bromobutane is relatively stable, but is toxic and flammable. When treated with a strong base, it is prone to undergo an E2 reaction, which is a bimolecular elimination reaction, resulting in (predominantly) 2-butene, an alkene (double bond). 2-Bromobutane is an irritant, and harmful if ingested. It can irritate and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


2-Bromohexane
2-Bromohexane is the organobromine compound with the formula CH3CH(Br)(CH2)3CH3. It is a colorless liquid. The compound is chiral. Most 2-bromoalkanes are prepared by addition of hydrogen bromide to the 1-alkene. Markovnikov addition In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870. Explanation The rule states that with the addition of a p ... proceeds in the absence of free-radicals, i.e. give the 2-bromo derivatives. References {{DEFAULTSORT:Bromohexane, 2- Bromoalkanes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Organobromine Compound
Organobromine compounds, also called organobromides, are organic compounds that contain carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ... Chemical bond, bonded to bromine. The most pervasive is the naturally produced bromomethane. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. General properties Most organobromine compounds, like most organohalogens, organohalide compounds, are relative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markovnikov Addition
In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870. Explanation The rule states that with the addition of a protic acid HX or other polar reagent to an asymmetric alkene, the acid hydrogen (H) or electropositive part gets attached to the carbon with more hydrogen substituents, and the halide (X) group or electronegative part gets attached to the carbon with more alkyl substituents. This is in contrast to Markovnikov's original definition, in which the rule is stated that the X component is added to the carbon with the fewest hydrogen atoms while the hydrogen atom is added to the carbon with the greatest number of hydrogen atoms. The same is true when an alkene reacts with water in an addition reaction to form an alcohol which involve formation of carbocations. The hydroxyl group (OH) bonds to the carbon that has the greater number of carbon–ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grignard Reagent
A Grignard reagent or Grignard compound is a chemical compound with the general formula , where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride and phenylmagnesium bromide . They are a subclass of the organomagnesium compounds. Grignard compounds are popular reagents in organic synthesis for creating new carbon-carbon bonds. For example, when reacted with another halogenated compound in the presence of a suitable catalyst, they typically yield and the magnesium halide as a byproduct; and the latter is insoluble in the solvents normally used. In this aspect, they are similar to organolithium reagents. Pure Grignard reagents are extremely reactive solids. They are normally handled as solutions in solvents such as diethyl ether or tetrahydrofuran; which are relatively stable as long as water is excluded. In such a medium, a Grignard reagent is invariably present as a complex with the magnesium atom conn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Potassium Fluoride
Potassium fluoride is the chemical compound with the formula KF. After hydrogen fluoride, KF is the primary source of the fluoride ion for applications in manufacturing and in chemistry. It is an alkali halide and occurs naturally as the rare mineral carobbiite. Solutions of KF will etch glass due to the formation of soluble fluorosilicates, although HF is more effective. Preparation Potassium fluoride is prepared by dissolving potassium carbonate in hydrofluoric acid. Evaporation of the solution forms crystals of potassium bifluoride. The bifluoride on heating yields potassium fluoride: : K2CO3 + 4HF -> 2KHF2 + CO2 ^ + H2O : KHF2 -> KF + HF ^ Platinum or heat resistant plastic containers are often used for these operations. Potassium chloride converts to KF upon treatment with hydrogen fluoride. In this way, potassium fluoride is recyclable. Crystalline properties KF crystallizes in the cubic NaCl crystal structure. The lattice parameter at room temperature is 0.266 nm. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluorocarbon
Fluorocarbons are chemical compounds with carbon-fluorine bonds. Compounds that contain many C-F bonds often has distinctive properties, e.g., enhanced stability, volatility, and hydrophobicity. Fluorocarbons and their derivatives are commercial polymers, refrigerants, drugs, and anesthetics. Nomenclature Perfluorocarbons or PFCs, are organofluorine compounds with the formula CxFy, i.e., they contain only carbon and fluorine. The terminology is not strictly followed and many fluorine-containing organic compounds are called fluorocarbons. Compounds with the prefix perfluoro- are hydrocarbons, including those with heteroatoms, wherein all C-H bonds have been replaced by C-F bonds. Fluorocarbons includes perfluoroalkanes, fluoroalkenes, fluoroalkynes, and perfluoroaromatic compounds. Perfluoroalkanes Chemical properties Perfluoroalkanes are very stable because of the strength of the carbon–fluorine bond, one of the strongest in organic chemistry. Its strength is a resu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bromoalkane
Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. General properties Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Carbon– halogen bond strengths, or bond dissociation energies are of 115, 83.7, 72.1, and 57.6 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bromocyclohexane
Bromocyclohexane (also called cyclohexyl bromide, abbreviated CXB) is an organic compound with the chemical formula C6H11Br. It is used to match the refractive index of PMMA for example in confocal microscopy of colloids. A mixture of ''cis''-decalin and CXB can simultaneously match optical index and density of PMMA. Due to the moderate dielectric constant of CXB (ε = 7.9 ), PMMA acquires charges that can be screened by the addition of salt (e.g. tetrabutyl ammonium bromide), leading to a very good approximation of colloidal hard sphere. A drawback is that CXB is a good solvent for PMMA, causing it to swell over time, which may lead to a poor determination of particle radii and determination of solid volume fraction. Synthesis Bromocyclohexane can be prepared by the free radical substitution of bromine to the cyclohexane ring at high temperatures or in presence of UV light. The reaction is unselective, giving a mixture of polybrominated products. In principle, another synth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]