Šidák Correction For T-test
   HOME
*





Šidák Correction For T-test
One of the application of Student's t-test is to test the location of one sequence of independent and identically distributed random variables. If we want to test the locations of multiple sequences of such variables, Šidák correction should be applied in order to calibrate the level of the Student's t-test. Moreover, if we want to test the locations of nearly infinitely many sequences of variables, then Šidák correction should be used, but with caution. More specifically, the validity of Šidák correction depends on how fast the number of sequences goes to infinity. Introduction Suppose we are interested in different hypotheses, H_,...,H_ , and would like to check if all of them are true. Now the hypothesis test scheme becomes : H_ : all of H_ are true; : H_: at least one of H_ is false. Let \alpha be the level of this test (the type-I error), that is, the probability that we falsely reject H_ when it is true. We aim to design a test with certain level \al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Student's T-test
A ''t''-test is any statistical hypothesis test in which the test statistic follows a Student's ''t''-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a Scale parameter, scaling term in the test statistic were known (typically, the scaling term is unknown and therefore a nuisance parameter). When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's ''t'' distribution. The ''t''-test's most common application is to test whether the means of two populations are different. History The term "''t''-statistic" is abbreviated from "hypothesis test statistic". In statistics, the t-distribution was first derived as a Posterior probability, posterior distribution in 1876 by Friedrich Robert Helmert, Helmert and Jacob Lüroth, Lüroth. The t-distribution also appeared in a more general form as Pearson Type Pearson distribution, IV di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Independent And Identically Distributed Random Variables
In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as ''i.i.d.'', ''iid'', or ''IID''. IID was first defined in statistics and finds application in different fields such as data mining and signal processing. Introduction In statistics, we commonly deal with random samples. A random sample can be thought of as a set of objects that are chosen randomly. Or, more formally, it’s “a sequence of independent, identically distributed (IID) random variables”. In other words, the terms ''random sample'' and ''IID'' are basically one and the same. In statistics, we usually say “random sample,” but in probability it’s more common to say “IID.” * Identically Distributed means that there are no overall trends–the distribution doesn’t fluctuate and all items in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Šidák Correction
In statistics, the Šidák correction, or Dunn–Šidák correction, is a method used to counteract the problem of multiple comparisons. It is a simple method to control the familywise error rate. When all null hypotheses are true, the method provides familywise error control that is exact for tests that are stochastically independent, is conservative for tests that are positively dependent, and is liberal for tests that are negatively dependent. It is credited to a 1967 paper by the statistician and probabilist Zbyněk Šidák. Usage * Given ''m'' different null hypotheses and a familywise alpha level of \alpha, each null hypotheses is rejected that has a p-value lower than \alpha_ = 1-(1-\alpha)^\frac . * This test produces a familywise Type I error rate of exactly \alpha when the tests are independent from each other and all null hypotheses are true. It is less stringent than the Bonferroni correction, but only slightly. For example, for \alpha = 0.05 and ''m'' = 10, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T-statistic
In statistics, the ''t''-statistic is the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error. It is used in hypothesis testing via Student's ''t''-test. The ''t''-statistic is used in a ''t''-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that ''t''-statistic is used when the sample size is small or the population standard deviation is unknown. For example, the ''t''-statistic is used in estimating the population mean from a sampling distribution of sample means if the population standard deviation is unknown. It is also used along with p-value when running hypothesis tests where the p-value tells us what the odds are of the results to have happened. Definition and features Let \hat\beta be an estimator of parameter ''β'' in some statistical model. Then a ''t''-statistic for this parameter is any quantity of the form : t_ = \frac, whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High-dimensional Statistics
In statistical theory, the field of high-dimensional statistics studies data whose dimension is larger than typically considered in classical multivariate analysis. The area arose owing to the emergence of many modern data sets in which the dimension of the data vectors may be comparable to, or even larger than, the sample size, so that justification for the use of traditional techniques, often based on asymptotic arguments with the dimension held fixed as the sample size increased, was lacking. Examples Parameter estimation in linear models The most basic statistical model for the relationship between a covariate vector x \in \mathbb^p and a response variable y \in \mathbb is the linear model : y = x^\top \beta + \epsilon, where \beta \in \mathbb^p is an unknown parameter vector, and \epsilon is random noise with mean zero and variance \sigma^2. Given independent responses Y_1,\ldots,Y_n, with corresponding covariates x_1,\ldots,x_n, from this model, we can form the response ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bootstrapping
In general, bootstrapping usually refers to a self-starting process that is supposed to continue or grow without external input. Etymology Tall boots may have a tab, loop or handle at the top known as a bootstrap, allowing one to use fingers or a boot hook tool to help pulling the boots on. The saying "to " was already in use during the 19th century as an example of an impossible task. The idiom dates at least to 1834, when it appeared in the ''Workingman's Advocate'': "It is conjectured that Mr. Murphee will now be enabled to hand himself over the Cumberland river or a barn yard fence by the straps of his boots."Jan FreemanBootstraps and Baron Munchausen ''Boston.com'', January 27, 2009 In 1860 it appeared in a comment on philosophy of mind: "The attempt of the mind to analyze itself san effort analogous to one who would lift himself by his own bootstraps." Bootstrap as a metaphor, meaning to better oneself by one's own unaided efforts, was in use in 1922. This metaphor spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Limit Theorem
In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselves are not normally distributed. The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions. This theorem has seen many changes during the formal development of probability theory. Previous versions of the theorem date back to 1811, but in its modern general form, this fundamental result in probability theory was precisely stated as late as 1920, thereby serving as a bridge between classical and modern probability theory. If X_1, X_2, \dots, X_n, \dots are random samples drawn from a population with overall mean \mu and finite variance and if \bar_n is the sample mean of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple Comparisons
In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made. History The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Israel. Definition Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bonferroni Correction
In statistics, the Bonferroni correction is a method to counteract the multiple comparisons problem. Background The method is named for its use of the Bonferroni inequalities. An extension of the method to confidence intervals was proposed by Olive Jean Dunn. Statistical hypothesis testing is based on rejecting the null hypothesis if the likelihood of the observed data under the null hypotheses is low. If multiple hypotheses are tested, the probability of observing a rare event increases, and therefore, the likelihood of incorrectly rejecting a null hypothesis (i.e., making a Type I error) increases. The Bonferroni correction compensates for that increase by testing each individual hypothesis at a significance level of \alpha/m, where \alpha is the desired overall alpha level and m is the number of hypotheses. For example, if a trial is testing m = 20 hypotheses with a desired \alpha = 0.05, then the Bonferroni correction would test each individual hypothesis at \alpha = 0.05/20 = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Family-wise Error Rate
In statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. Familywise and Experimentwise Error Rates Tukey (1953) developed the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Based on Tukey (1953), Ryan (1959) proposed the related concept of an ''experimentwise error rate'', which is the probability of making a Type I error in a given experiment. Hence, an experimentwise error rate is a familywise error rate for all of the tests that are conducted within an experiment. As Ryan (1959, Footnote 3) explained, an experiment may contain two or more families of multiple comparisons, each of which relates to a particular statistical inference and each of which has its own separate familywise error rate. Hence, familywise error rates are usually based on theoretically informative collections of multiple c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Testing Procedure
In statistics, the closed testing procedure is a general method for performing more than one hypothesis test simultaneously. The closed testing principle Suppose there are ''k'' hypotheses ''H''1,..., ''H''''k'' to be tested and the overall type I error rate is α. The closed testing principle allows the rejection of any one of these elementary hypotheses, say ''H''''i'', if all possible intersection hypotheses involving ''H''''i'' can be rejected by using valid local level α tests; the adjusted p-value is the largest among those hypotheses. It controls the family-wise error rate for all the ''k'' hypotheses at level α in the strong sense. Example Suppose there are three hypotheses ''H''1,''H''2, and ''H''3 to be tested and the overall type I error rate is 0.05. Then ''H''1 can be rejected at level α if ''H''1 ∩ ''H''2 ∩ ''H''3, ''H''1 ∩ ''H''2, ''H''1 ∩ ''H''3 and ''H''1 can all be rejected using valid tests with level α. Special cases The Holm–Bonferroni method ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]