Commutative Algebra
   HOME

TheInfoList



OR:

Commutative algebra, first known as
ideal theory In mathematics, ideal theory is the theory of ideal (ring theory), ideals in commutative rings. While the notion of an ideal exists also for Noncommutative ring, non-commutative rings, a much more substantial theory exists only for commutative rin ...
, is the branch of
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
that studies
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s, their ideals, and modules over such rings. Both
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
and
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
build on commutative algebra. Prominent examples of commutative rings include
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s; rings of
algebraic integer In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s, including the ordinary
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as
noncommutative algebra In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a ...
; it includes ring theory,
representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
, and the theory of
Banach algebra In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach sp ...
s.


Overview

Commutative algebra is essentially the study of the rings occurring in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
and
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. Several concepts of commutative algebras have been developed in relation with algebraic number theory, such as
Dedekind ring In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily uni ...
s (the main class of commutative rings occurring in algebraic number theory),
integral extension In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over a subring ''A'' of ''B'' if ''b'' is a root of some monic polynomial over ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and ...
s, and
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every non-zero element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ' ...
s.
Polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s in several indeterminates over a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
are examples of commutative rings. Since algebraic geometry is fundamentally the study of the common zeros of these rings, many results and concepts of algebraic geometry have counterparts in commutative algebra, and their names recall often their geometric origin; for example "
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally ...
", "
localization of a ring Localization or localisation may refer to: Biology * Localization of function, locating psychological functions in the brain or nervous system; see Linguistic intelligence * Localization of sensation, ability to tell what part of the body is aff ...
", "
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
", "
regular ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maxi ...
". An
affine algebraic variety In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
corresponds to a
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
in a polynomial ring, and the points of such an affine variety correspond to the
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
s that contain this prime ideal. The
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
, originally defined on an algebraic variety, has been extended to the sets of the prime ideals of any commutative ring; for this topology, the
closed set In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
s are the sets of prime ideals that contain a given ideal. The
spectrum of a ring In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with ...
is a
ringed space In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of ...
formed by the prime ideals equipped with the Zariski topology, and the localizations of the ring at the
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
s of a basis of this topology. This is the starting point of
scheme theory In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different s ...
, a generalization of algebraic geometry introduced by
Grothendieck Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 â€“ 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research ext ...
, which is strongly based on commutative algebra, and has induced, in turns, many developments of commutative algebra.


History

The subject, first known as
ideal theory In mathematics, ideal theory is the theory of ideal (ring theory), ideals in commutative rings. While the notion of an ideal exists also for Noncommutative ring, non-commutative rings, a much more substantial theory exists only for commutative rin ...
, began with
Richard Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
's work on ideals, itself based on the earlier work of
Ernst Kummer Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of h ...
and
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, ...
. Later,
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
introduced the term ''ring'' to generalize the earlier term ''number ring''. Hilbert introduced a more abstract approach to replace the more concrete and computationally oriented methods grounded in such things as
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
and classical
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descr ...
. In turn, Hilbert strongly influenced
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
, who recast many earlier results in terms of an
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly Ideal (ring theory), ideals in certain commutative rings. These conditions p ...
, now known as the Noetherian condition. Another important milestone was the work of Hilbert's student
Emanuel Lasker Emanuel Lasker (; December 24, 1868 – January 11, 1941) was a German chess player, mathematician, and philosopher. He was the second World Chess Champion, holding the title for 27 years, from 1894 to 1921, the longest reign of any officially ...
, who introduced
primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. ...
s and proved the first version of the
Lasker–Noether theorem In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related ...
. The main figure responsible for the birth of commutative algebra as a mature subject was
Wolfgang Krull Wolfgang Krull (26 August 1899 – 12 April 1971) was a German mathematician who made fundamental contributions to commutative algebra, introducing concepts that are now central to the subject. Krull was born and went to school in Baden-Baden. H ...
, who introduced the fundamental notions of localization and completion of a ring, as well as that of
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maxi ...
s. He established the concept of the
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally ...
of a ring, first for Noetherian rings before moving on to expand his theory to cover general
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every non-zero element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ' ...
s and
Krull ring In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which a ...
s. To this day,
Krull's principal ideal theorem In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, ''Krull ...
is widely considered the single most important foundational theorem in commutative algebra. These results paved the way for the introduction of commutative algebra into algebraic geometry, an idea which would revolutionize the latter subject. Much of the modern development of commutative algebra emphasizes modules. Both ideals of a ring ''R'' and ''R''-algebras are special cases of ''R''-modules, so module theory encompasses both ideal theory and the theory of ring extensions. Though it was already incipient in Kronecker's work, the modern approach to commutative algebra using module theory is usually credited to Krull and Noether.


Main tools and results


Noetherian rings

A Noetherian ring, named after
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
, is a ring in which every ideal is finitely generated; that is, all elements of any ideal can be written as a
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
s of a finite set of elements, with coefficients in the ring. Many commonly considered commutative rings are Noetherian, in particular, every
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
, the ring of the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
, and every
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
in one or several indeterminates over them. The fact that polynomial rings over a field are Noetherian is called
Hilbert's basis theorem In mathematics Hilbert's basis theorem asserts that every ideal (ring theory), ideal of a polynomial ring over a field (mathematics), field has a finite generating set of an ideal, generating set (a finite ''basis'' in Hilbert's terminology). In ...
. Moreover, many ring constructions preserve the Noetherian property. In particular, if a commutative ring is Noetherian, the same is true for every polynomial ring over it, and for every
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
, localization, or completion of the ring. The importance of the Noetherian property lies in its ubiquity and also in the fact that many important theorems of commutative algebra require that the involved rings are Noetherian, This is the case, in particular of
Lasker–Noether theorem In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related ...
, the
Krull intersection theorem In mathematics, more specifically in ring theory, local rings are certain ring (mathematics), rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or m ...
, and
Nakayama's lemma In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and ...
. Furthermore, if a ring is Noetherian, then it satisfies the
descending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings. These conditions played an important r ...
on
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s, which implies that every Noetherian
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
has a finite
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally ...
.


Primary decomposition

An ideal ''Q'' of a ring is said to be ''
primary Primary or primaries may refer to: Arts, entertainment, and media Music Groups and labels * Primary (band), from Australia * Primary (musician), hip hop musician and record producer from South Korea * Primary Music, Israeli record label Work ...
'' if ''Q'' is proper and whenever ''xy'' ∈ ''Q'', either ''x'' ∈ ''Q'' or ''yn'' ∈ ''Q'' for some positive integer ''n''. In Z, the primary ideals are precisely the ideals of the form (''pe'') where ''p'' is prime and ''e'' is a positive integer. Thus, a primary decomposition of (''n'') corresponds to representing (''n'') as the intersection of finitely many primary ideals. The ''
Lasker–Noether theorem In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related ...
'', given here, may be seen as a certain generalization of the fundamental theorem of arithmetic: For any primary decomposition of ''I'', the set of all radicals, that is, the set remains the same by the Lasker–Noether theorem. In fact, it turns out that (for a Noetherian ring) the set is precisely the assassinator of the module ''R''/''I''; that is, the set of all annihilators of ''R''/''I'' (viewed as a module over ''R'') that are prime.


Localization

The localization is a formal way to introduce the "denominators" to a given ring or a module. That is, it introduces a new ring/module out of an existing one so that it consists of
fractions A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
:\frac. where the
denominator A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
s ''s'' range in a given subset ''S'' of ''R''. The archetypal example is the construction of the ring Q of rational numbers from the ring Z of integers.


Completion

A completion is any of several related
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s on
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
s and modules that result in complete
topological ring In mathematics, a topological ring is a ring R that is also a topological space such that both the addition and the multiplication are continuous as maps: R \times R \to R where R \times R carries the product topology. That means R is an additive ...
s and modules. Completion is similar to localization, and together they are among the most basic tools in analysing
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s. Complete commutative rings have simpler structure than the general ones and
Hensel's lemma In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to ...
applies to them.


Zariski topology on prime ideals

The
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not ...
defines a
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
on the
spectrum of a ring In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with ...
(the set of prime ideals). In this formulation, the Zariski-closed sets are taken to be the sets :V(I) = \ where ''A'' is a fixed commutative ring and ''I'' is an ideal. This is defined in analogy with the classical Zariski topology, where closed sets in affine space are those defined by polynomial equations . To see the connection with the classical picture, note that for any set ''S'' of polynomials (over an algebraically closed field), it follows from
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ge ...
that the points of ''V''(''S'') (in the old sense) are exactly the tuples (''a1'', ..., ''an'') such that the ideal (''x1'' - ''a1'', ..., ''xn'' - ''an'') contains ''S''; moreover, these are maximal ideals and by the "weak" Nullstellensatz, an ideal of any affine coordinate ring is maximal if and only if it is of this form. Thus, ''V''(''S'') is "the same as" the maximal ideals containing ''S''. Grothendieck's innovation in defining Spec was to replace maximal ideals with all prime ideals; in this formulation it is natural to simply generalize this observation to the definition of a closed set in the spectrum of a ring.


Connections with algebraic geometry

Commutative algebra (in the form of
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s and their quotients, used in the definition of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
) has always been a part of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. However, in the late 1950s, algebraic varieties were subsumed into
Alexander Grothendieck Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 â€“ 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research ext ...
's concept of a scheme. Their local objects are affine schemes or prime spectra, which are locally ringed spaces, which form a category that is antiequivalent (dual) to the category of commutative unital rings, extending the duality between the category of affine algebraic varieties over a field ''k'', and the category of finitely generated reduced ''k''-algebras. The gluing is along the Zariski topology; one can glue within the category of locally ringed spaces, but also, using the Yoneda embedding, within the more abstract category of presheaves of sets over the category of affine schemes. The Zariski topology in the set-theoretic sense is then replaced by a Zariski topology in the sense of
Grothendieck topology In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is ca ...
. Grothendieck introduced Grothendieck topologies having in mind more exotic but geometrically finer and more sensitive examples than the crude Zariski topology, namely the
étale topology In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale ...
, and the two flat Grothendieck topologies: fppf and fpqc. Nowadays some other examples have become prominent, including the
Nisnevich topology In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. ...
. Sheaves can be furthermore generalized to stacks in the sense of Grothendieck, usually with some additional representability conditions, leading to Artin stacks and, even finer,
Deligne–Mumford stack In algebraic geometry, a Deligne–Mumford stack is a stack ''F'' such that Pierre Deligne and David Mumford introduced this notion in 1969 when they proved that moduli spaces of stable curves of fixed arithmetic genus are proper smooth Delig ...
s, both often called algebraic stacks.


See also

*
List of commutative algebra topics Commutative algebra is the branch of abstract algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative ...
*
Glossary of commutative algebra This is a glossary of commutative algebra. See also list of algebraic geometry topics, glossary of classical algebraic geometry, glossary of algebraic geometry, glossary of ring theory and glossary of module theory. In this article, all rings are ...
* Combinatorial commutative algebra *
Gröbner basis In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K _1,\ldots,x_n/math> ove ...
*
Homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...


Notes


References

* * * * * * * * * * * * * {{Authority control