HOME

TheInfoList



OR:

The Wilson quotient ''W''(''p'') is defined as: :W(p) = \frac If ''p'' is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
, the quotient is an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
by
Wilson's theorem In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of ...
; moreover, if ''p'' is composite, the quotient is not an integer. If ''p'' divides ''W''(''p''), it is called a
Wilson prime In number theory, a Wilson prime is a prime number p such that p^2 divides (p-1)!+1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p-1)!+1. Both are named for 18th-century E ...
. The integer values of ''W''(''p'') are : : ''W''(2) = 1 : ''W''(3) = 1 : ''W''(5) = 5 : ''W''(7) = 103 : ''W''(11) = 329891 : ''W''(13) = 36846277 : ''W''(17) = 1230752346353 : ''W''(19) = 336967037143579 : ... It is known that :W(p)\equiv B_-B_\pmod, :p-1+ptW(p)\equiv pB_\pmod{p^2}, where B_k is the ''k''-th
Bernoulli number In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions ...
. Note that the first relation comes from the second one by subtraction, after substituting t=1 and t=2.


See also

* Fermat quotient


References


External links


MathWorld: Wilson Quotient
Integer sequences