Verneuil Process
   HOME

TheInfoList



OR:

The Verneuil method (or Verneuil process or Verneuil technique), also called flame fusion, was the first commercially successful method of manufacturing synthetic gemstones, developed in the late 1883 by the French chemist Auguste Verneuil. It is primarily used to produce the
ruby A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called ...
,
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sa ...
and
padparadscha Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sa ...
varieties of corundum, as well as the
diamond simulant A diamond simulant, diamond imitation or imitation diamond is an object or material with gemological characteristics similar to those of a diamond. Simulants are distinct from synthetic diamonds, which are actual diamonds exhibiting the same ma ...
s
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visib ...
, strontium titanate and spinel. The principle of the process involves melting a finely powdered substance using an
oxyhydrogen Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough ...
flame, and crystallising the melted droplets into a boule. The process is considered to be the founding step of modern industrial
crystal growth A crystal is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. Crystal growth is a major stage of a crystallization process, and consists of the ...
technology, and remains in wide use to this day.


History

Since the study of
alchemy Alchemy (from Arabic: ''al-kīmiyā''; from Ancient Greek: χυμεία, ''khumeía'') is an ancient branch of natural philosophy, a philosophical and protoscientific tradition that was historically practiced in China, India, the Muslim world, ...
began, there have been attempts to synthetically produce precious stones, and
ruby A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called ...
, being one of the prized cardinal gems, has long been a prime candidate. In the 19th century, significant advances were achieved, with the first ruby formed by melting two smaller rubies together in 1817, and the first microscopic crystals created from alumina ( aluminium oxide) in a laboratory in 1837. By 1877, chemist
Edmond Frémy Edmond Frémy (; 28 February 1814 – 3 February 1894) was a French chemist. He is perhaps best known today for Frémy's salt, a strong oxidizing agent which he discovered in 1845. Fremy's salt is a long-lived free radical that finds use as a s ...
had devised an effective method for commercial ruby manufacture by using molten baths of alumina, yielding the first gemstone-quality synthetic stones. The
Paris Paris () is the Capital city, capital and List of communes in France with over 20,000 inhabitants, most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), ma ...
ian chemist Auguste Verneuil collaborated with Frémy on developing the method, but soon went on to independently develop the flame fusion process, which would eventually come to bear his name. One of Verneuil's sources of inspiration for developing his own method was the appearance of synthetic rubies sold by an unknown
Geneva , neighboring_municipalities= Carouge, Chêne-Bougeries, Cologny, Lancy, Grand-Saconnex, Pregny-Chambésy, Vernier, Veyrier , website = https://www.geneve.ch/ Geneva ( ; french: Genève ) frp, Genèva ; german: link=no, Genf ; it, Ginevr ...
n merchant in 1880. These "Geneva rubies" were dismissed as artificial at the time, but are now believed to be the first rubies produced by flame fusion, predating Verneuil's work on the process by 20 years. After examining the "Geneva rubies", Verneuil came to the conclusion that it was possible to recrystallise finely ground aluminium oxide into a large gemstone. This realisation, along with the availability of the recently developed oxyhydrogen torch and growing demand for synthetic rubies, led him to design the Verneuil furnace, where finely ground purified alumina and
chromium oxide Chromium oxide may refer to: * Chromium(II) oxide, CrO * Chromium(III) oxide, Cr2O3 * Chromium dioxide (chromium(IV) oxide), CrO2, which includes the hypothetical compound chromium(II) chromate * Chromium trioxide (chromium(VI) oxide), CrO3 * Chro ...
were melted by a flame of at least , and recrystallised on a support below the flame, creating a large crystal. He announced his work in 1902, publishing details outlining the process in 1904. By 1910, Verneuil's laboratory had expanded into a 30-furnace production facility, with annual gemstone production by the Verneuil process having reached in 1907. By 1912, production reached , and would go on to reach in 1980 and in 2000, led by Hrand Djevahirdjian's factory in
Monthey Monthey (; frp, Montê) is the capital of the district of Monthey in the canton of Valais in Switzerland. History The castle in the town center was built in 950 on a hill, the first houses of Monthey surrounded it. Monthey is first mention ...
, Switzerland, founded in 1914. The most notable improvements in the process were made in 1932, by S. K. Popov, who helped establish the capability for producing high-quality sapphires in the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
through the next 20 years. A large production capability was also established in the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territori ...
during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing ...
, when European sources were not available, and
jewels A gemstone (also called a fine gem, jewel, precious stone, or semiprecious stone) is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks (such as lapis lazuli, opal, a ...
were in high demand for their military applications such as for timepieces. The process was designed primarily for the synthesis of rubies, which became the first gemstone to be produced on an industrial scale. However, the Verneuil process could also be used for the production of other stones, including blue sapphire, which required oxides of
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
and
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
to be used in place of chromium oxide, as well as more elaborate ones, such as
star sapphires Star Sapphire is the name of several fictional characters in DC Comics; many of them are villainous, and all connected in origin. Within DC continuity, an immortal race of warrior women (the Zamarons) were depicted as having the ancient traditio ...
, where titania (
titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insolub ...
) was added and the boule was kept in the heat longer, allowing needles of
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visib ...
to crystallise within it. In 1947, the
Linde Air Products Linde plc is a global multinational chemical company founded in Germany and, since 2018, domiciled in Ireland and headquartered in the United Kingdom. Linde is the world's largest industrial gas company by market share and revenue. It serves ...
division of
Union Carbide Union Carbide Corporation is an American chemical corporation wholly owned subsidiary (since February 6, 2001) by Dow Chemical Company. Union Carbide produces chemicals and polymers that undergo one or more further conversions by customers befo ...
pioneered the use of the Verneuil process for creating such star sapphires, until production was discontinued in 1974 owing to overseas competition. Despite some improvements in the method, the Verneuil process remains virtually unchanged to this day, while maintaining a leading position in the manufacture of synthetic corundum and spinel gemstones. Its most significant setback came in 1917, when Jan Czochralski introduced the Czochralski process, which has found numerous applications in the semiconductor industry, where a much higher quality of crystals is required than the Verneuil process can produce. Other alternatives to the process emerged in 1957, when
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial Research and development, research and scientific developm ...
introduced the hydrothermal process, and in 1958, when
Carroll Chatham Carroll Chatham (1914–1983) was an American chemist who developed the flux method for synthesizing emeralds. He was the first person to develop a method for creating man-made emeralds that was able to make them commercially available. He founded ...
introduced the
flux method The flux method of crystal growth is a method where the components of the desired substance are dissolved in a solvent (flux). The method is particularly suitable for crystals needing to be free from thermal strain. It takes place in a crucible ma ...
. In 1989 Larry P Kelley of ICT, Inc. also developed a variant of the Czochralski process where natural ruby is used as the 'feed' material.


Process

One of the most crucial factors in successfully crystallising an artificial gemstone is obtaining highly pure starting material, with at least 99.9995% purity. In the case of manufacturing rubies, sapphires or
padparadscha Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sa ...
, this material is alumina. The presence of
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
impurities is especially undesirable, as it makes the crystal
opaque Opacity or opaque may refer to: * Impediments to (especially, visible) light: ** Opacities, absorption coefficients ** Opacity (optics), property or degree of blocking the transmission of light * Metaphors derived from literal optics: ** In lingu ...
. But because the
bauxite Bauxite is a sedimentary rock with a relatively high aluminium content. It is the world's main source of aluminium and gallium. Bauxite consists mostly of the aluminium minerals gibbsite (Al(OH)3), boehmite (γ-AlO(OH)) and diaspore (α-AlO ...
from which alumina is obtained is most likely by way of the Bayer process (the first stage of which introduces
caustic soda Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali ...
in order to separate the Al2O3) particular attention must be paid to the feedstock. Depending on the desired colouration of the crystal, small quantities of various oxides are added, such as chromium oxide for a red ruby, or ferric oxide and titania for a blue sapphire. Other starting materials include titania for producing rutile, or titanyl double
oxalate Oxalate (IUPAC: ethanedioate) is an anion with the formula C2O42−. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na2C2O4), and several esters such as dimethyl ...
for producing strontium titanate. Alternatively, small, valueless crystals of the desired product can be used. This starting material is finely powdered, and placed in a container within a Verneuil furnace, with an opening at the bottom through which the powder can escape when the container is vibrated. While the powder is being released,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
is supplied into the furnace, and travels with the powder down a narrow tube. This tube is located within a larger tube, into which
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
is supplied. At the point where the narrow tube opens into the larger one,
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
occurs, with a flame of at least at its core. As the powder passes through the flame, it melts into small droplets, which fall onto an earthen support rod placed below. The droplets gradually form a sinter cone on the rod, the tip of which is close enough to the core to remain liquid. It is at that tip that the seed crystal eventually forms. As more droplets fall onto the tip, a
single crystal In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries.RIWD. "Re ...
, called a '' boule'', starts to form, and the support is slowly moved downward, allowing the base of the boule to crystallise, while its cap always remains liquid. The boule is formed in the shape of a tapered cylinder, with a diameter broadening away from the base and eventually remaining more or less constant. With a constant supply of powder and withdrawal of the support, very long cylindrical boules can be obtained. Once removed from the furnace and allowed to cool, the boule is split along its vertical axis to relieve internal pressure, otherwise the crystal will be prone to fracture when the stalk is broken due to a vertical parting plane. When initially outlining the process, Verneuil specified a number of conditions crucial for good results. These include: a flame temperature that is not higher than necessary for fusion; always keeping the melted product in the same part of the oxyhydrogen flame; and reducing the point of contact between the melted product and support to as small an area as possible. The average commercially produced boule using the process is in diameter and long, weighing about . The process can also be performed with a custom-oriented seed crystal to achieve a specific desired crystallographic orientation. Crystals produced by the Verneuil process are chemically and physically equivalent to their naturally occurring counterparts, and strong magnification is usually required to distinguish between the two. One of the telltale characteristics of a Verneuil crystal is curved growth lines (curved striae) formed as the cylindrical boule grows upwards in an environment with a high
thermal gradient A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degre ...
; the equivalent lines in natural crystals are straight. Another distinguishing feature is the common presence of microscopic gas bubbles formed due to an excess of oxygen in the furnace; imperfections in natural crystals are usually solid impurities.


See also

*
Bridgman–Stockbarger method The Bridgman–Stockbarger method, or Bridgman–Stockbarger technique, is named after Harvard physicist Percy Williams Bridgman (1882–1961) and MIT physicist Donald C. Stockbarger (1895–1952). The method includes two similar but distinct te ...
*
Czochralski method The Czochralski method, also Czochralski technique or Czochralski process, is a method of crystal growth used to obtain single crystals of semiconductors (e.g. silicon, germanium and gallium arsenide), metals (e.g. palladium, platinum, silver, ...
*
Float-zone silicon Float-zone silicon is very pure silicon obtained by vertical zone melting. The process was developed at Bell Labs by Henry Theuerer in 1955 as a modification of a method developed by William Gardner Pfann for germanium. In the vertical configurat ...
*
Kyropoulos method The Kyropoulos method, KY method, or Kyropoulos technique, is a method of bulk crystal growth used to obtain single crystals. The largest application of the Kyropoulos method is to grow large boules of single crystal sapphire used to produce s ...
*
Laser-heated pedestal growth Laser-heated pedestal growth (LHPG) or laser floating zone (LFZ) is a crystal growth technique. A narrow region of a crystal is melted with a powerful CO2 or YAG laser. The laser and hence the floating zone, is moved along the crystal. The molte ...
*
Micro-pulling-down The micro-pulling-down (μ-PD) method is a crystal growth technique based on continuous transport of the melted substance through micro-channel(s) made in a crucible bottom. Continuous solidification of the melt is progressed on a liquid/solid inte ...
* Shelby Gem Factory


References

* * * * * * R. T. Liddicoat Jr.
Gem
McGraw-Hill AccessScience, January 2002, Page 2. *{{cite web , first1=R. W. , last1=Hughes , first2=J. I. , last2=Koivula , url=http://ruby-sapphire.com/verneuil-synthetic-corundum-dangerous-curves.htm , title=Dangerous Curves: A Reexamination of Verneuil Synthetic Corundum , date=October 2005 Chemical processes Mineralogy Gemology French inventions Industrial processes Crystals Science and technology in France Methods of crystal growth