In
materials science
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries.
The intellectual origins of materials sci ...
and
continuum mechanics
Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a ''continuous medium'' (also called a ''continuum'') rather than as discrete particles.
Continuum mec ...
, viscoelasticity is the property of
materials
A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their ge ...
that exhibit both
viscous
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
and
elastic
Elastic is a word often used to describe or identify certain types of elastomer, Elastic (notion), elastic used in garments or stretch fabric, stretchable fabrics.
Elastic may also refer to:
Alternative name
* Rubber band, ring-shaped band of rub ...
characteristics when undergoing
deformation. Viscous materials, like water, resist both
shear flow
In solid mechanics, shear flow is the shear stress over a distance in a thin-walled structure.Higdon, Ohlsen, Stiles and Weese (1960), ''Mechanics of Materials'', article 4-9 (2nd edition), John Wiley & Sons, Inc., New York. Library of Congress CCN ...
and
strain linearly with time when a
stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.
Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of
bond stretching along
crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an
amorphous
In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
material.
[Meyers and Chawla (1999): "Mechanical Behavior of Materials", 98-103.]
Background
In the nineteenth century, physicists such as
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
,
Ludwig Boltzmann
Ludwig Eduard Boltzmann ( ; ; 20 February 1844 – 5 September 1906) was an Austrian mathematician and Theoretical physics, theoretical physicist. His greatest achievements were the development of statistical mechanics and the statistical ex ...
, and
Lord Kelvin
William Thomson, 1st Baron Kelvin (26 June 182417 December 1907), was a British mathematician, Mathematical physics, mathematical physicist and engineer. Born in Belfast, he was the Professor of Natural Philosophy (Glasgow), professor of Natur ...
researched and experimented with
creep and recovery of
glass
Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
es,
metal
A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s, and
rubber
Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds.
Types of polyisoprene ...
s. Viscoelasticity was further examined in the late twentieth century when
synthetic polymer
Some familiar household synthetic polymers include: Nylons in textiles and fabrics, Teflon in non-stick pans, Bakelite for electrical switches, polyvinyl chloride (PVC) in pipes, etc. The common PET bottles are made of a synthetic polymer, polyet ...
s were engineered and used in a variety of applications.
[McCrum, Buckley, and Bucknell (2003): "Principles of Polymer Engineering," 117-176.] Viscoelasticity calculations depend heavily on the
viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
variable, ''η''. The inverse of ''η'' is also known as
fluidity, ''φ''. The value of either can be derived as a
function of temperature or as a given value (i.e. for a
dashpot
A dashpot, also known as a damper, is a mechanical device that resists motion via viscous damping. The resulting force is proportional to the velocity, but acts in the opposite direction, slowing the motion and absorbing energy. It is commonly us ...
).
[
Depending on the change of strain rate versus stress inside a material, the viscosity can be categorized as having a linear, non-linear, or plastic response. When a material exhibits a linear response it is categorized as a Newtonian material. In this case the stress is linearly proportional to the strain rate. If the material exhibits a non-linear response to the strain rate, it is categorized as non-Newtonian fluid. There is also an interesting case where the viscosity decreases as the shear/strain rate remains constant. A material which exhibits this type of behavior is known as thixotropic. In addition, when the stress is independent of this strain rate, the material exhibits plastic deformation.][ Many viscoelastic materials exhibit ]rubber
Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds.
Types of polyisoprene ...
like behavior explained by the thermodynamic theory of polymer elasticity.
Some examples of viscoelastic materials are amorphous polymers, semicrystalline polymers, biopolymers, metals at very high temperatures, and bitumen materials. Cracking occurs when the strain is applied quickly and outside of the elastic limit. Ligament
A ligament is a type of fibrous connective tissue in the body that connects bones to other bones. It also connects flight feathers to bones, in dinosaurs and birds. All 30,000 species of amniotes (land animals with internal bones) have liga ...
s and tendon
A tendon or sinew is a tough band of fibrous connective tissue, dense fibrous connective tissue that connects skeletal muscle, muscle to bone. It sends the mechanical forces of muscle contraction to the skeletal system, while withstanding tensi ...
s are viscoelastic, so the extent of the potential damage to them depends on both the rate of the change of their length and the force applied.
A viscoelastic material has the following properties:
* hysteresis
Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
is seen in the stress–strain curve
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress a ...
* stress relaxation
In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing som ...
occurs: step constant strain causes decreasing stress
* creep occurs: step constant stress causes increasing strain
*its stiffness depends on the strain rate or the stress rate
Elastic versus viscoelastic behavior
Unlike purely elastic substances, a viscoelastic substance has an elastic component and a viscous component. The viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of a viscoelastic substance gives the substance a strain rate dependence on time. Purely elastic materials do not dissipate energy (heat) when a load is applied, then removed. However, a viscoelastic substance dissipates energy when a load is applied, then removed. Hysteresis
Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
is observed in the stress–strain curve, with the area of the loop being equal to the energy lost during the loading cycle. Since viscosity is the resistance to thermally activated plastic deformation, a viscous material will lose energy through a loading cycle. Plastic deformation results in lost energy, which is uncharacteristic of a purely elastic material's reaction to a loading cycle.[
Specifically, viscoelasticity is a molecular rearrangement. When a stress is applied to a viscoelastic material such as a ]polymer
A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
, parts of the long polymer chain change positions. This movement or rearrangement is called creep. Polymers remain a solid material even when these parts of their chains are rearranging in order to accommodate the stress, and as this occurs, it creates a back stress in the material. When the back stress is the same magnitude as the applied stress, the material no longer creeps. When the original stress is taken away, the accumulated back stresses will cause the polymer to return to its original form. The material creeps, which gives the prefix visco-, and the material fully recovers, which gives the suffix -elasticity.[
]
Linear viscoelasticity and nonlinear viscoelasticity
Linear viscoelasticity is when the function is separable in both creep response and load. All linear viscoelastic models can be represented by a Volterra equation connecting stress and strain:
or
where
* is time
* is stress
* is strain
* and are instantaneous elastic moduli for creep and relaxation
* is the creep function
* is the relaxation function
Linear viscoelasticity is usually applicable only for small deformations.
Nonlinear viscoelasticity is when the function is not separable. It usually happens when the deformations are large or if the material changes its properties under deformations. Nonlinear viscoelasticity also elucidates observed phenomena such as normal stresses, shear thinning, and extensional thickening in viscoelastic fluids.
An anelastic material is a special case of a viscoelastic material: an anelastic material will fully recover to its original state on the removal of load.
When distinguishing between elastic, viscous, and forms of viscoelastic behavior, it is helpful to reference the time scale of the measurement relative to the relaxation times of the material being observed, known as the Deborah number (De) where:
where
* is the relaxation time of the material
* is time
Dynamic modulus
Viscoelasticity is studied using dynamic mechanical analysis
Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, ...
, applying a small oscillatory stress and measuring the resulting strain.
* Purely elastic materials have stress and strain in phase, so that the response of one caused by the other is immediate.
* In purely viscous materials, strain lags stress by a 90 degree phase.
* Viscoelastic materials exhibit behavior somewhere in the middle of these two types of material, exhibiting some lag in strain.
A complex dynamic modulus
Dynamic modulus (sometimes complex modulusThe Open University (UK), 2000. ''T838 Design and Manufacture with Polymers: Solid properties and design'', page 30. Milton Keynes: The Open University.) is the ratio of stress to strain under ''vibratory ...
G can be used to represent the relations between the oscillating stress and strain:
where ; is the ''storage modulus'' and is the ''loss modulus'':
where and are the amplitudes of stress and strain respectively, and is the phase shift between them.
Constitutive models of linear viscoelasticity
Viscoelastic materials, such as amorphous polymers, semicrystalline polymers, biopolymers and even the living tissue and cells, can be modeled in order to determine their stress and strain or force and displacement interactions as well as their temporal dependencies. These models, which include the Maxwell model, the Kelvin–Voigt model, the standard linear solid model
The standard linear solid (SLS), also known as the Zener model after Clarence Zener, is a method of modeling the behavior of a viscoelastic material using a linear combination of springs and dashpots to represent elastic and viscous components, r ...
, and the Burgers model, are used to predict a material's response under different loading conditions.
Viscoelastic behavior has elastic and viscous components modeled as linear combinations of springs and dashpots, respectively. Each model differs in the arrangement of these elements, and all of these viscoelastic models can be equivalently modeled as electrical circuits.
In an equivalent electrical circuit, stress is represented by current, and strain rate
In mechanics and materials science, strain rate is the time derivative of strain of a material. Strain rate has dimension of inverse time and SI units of inverse second, s−1 (or its multiples).
The strain rate at some point within the mat ...
by voltage. The elastic modulus of a spring is analogous to the inverse of a circuit's ''inductance'' (it stores energy) and the viscosity of a dashpot to a circuit's ''resistance'' (it dissipates energy).
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula:
where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law
In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
.
The viscous components can be modeled as dashpots such that the stress–strain rate relationship can be given as,
where σ is the stress, η is the viscosity of the material, and dε/dt is the time derivative of strain.
The relationship between stress and strain can be simplified for specific stress or strain rates. For high stress or strain rates/short time periods, the time derivative components of the stress–strain relationship dominate. In these conditions it can be approximated as a rigid rod capable of sustaining high loads without deforming. Hence, the dashpot can be considered to be a "short-circuit".[Van Vliet, Krystyn J. (2006)]
"3.032 Mechanical Behavior of Materials"
/ref>
Conversely, for low stress states/longer time periods, the time derivative components are negligible and the dashpot can be effectively removed from the system – an "open" circuit. As a result, only the spring connected in parallel to the dashpot will contribute to the total strain in the system.[
]
Maxwell model
The Maxwell model can be represented by a purely viscous damper and a purely elastic spring connected in series, as shown in the diagram. The model can be represented by the following equation:
Under this model, if the material is put under a constant strain, the stresses gradually relax
Relax or RELAX may refer to:
Albums
* ''Relax'' (album), by Das Racist, 2011
* ''Relax'', by Blank & Jones, 2003
* ''Relax'', by Los Piratas, 2003
Songs
* "Relax" (Deetah song), 1998
* "Relax" (Frankie Goes to Hollywood song), 1983
* "Relax ...
. When a material is put under a constant stress, the strain has two components. First, an elastic component occurs instantaneously, corresponding to the spring, and relaxes immediately upon release of the stress. The second is a viscous component that grows with time as long as the stress is applied. The Maxwell model predicts that stress decays exponentially with time, which is accurate for most polymers. One limitation of this model is that it does not predict creep accurately. The Maxwell model for creep or constant-stress conditions postulates that strain will increase linearly with time. However, polymers for the most part show the strain rate to be decreasing with time.[
This model can be applied to soft solids: thermoplastic polymers in the vicinity of their melting temperature, fresh concrete (neglecting its aging), and numerous metals at a temperature close to their melting point.
The equation introduced here, however, lacks a consistent derivation from more microscopic model and is not observer independent. The Upper-convected Maxwell model is its sound formulation in terms of the ]Cauchy stress tensor
In continuum mechanics, the Cauchy stress tensor (symbol \boldsymbol\sigma, named after Augustin-Louis Cauchy), also called true stress tensor or simply stress tensor, completely defines the state of stress at a point inside a material in the d ...
and constitutes the simplest tensorial constitutive model for viscoelasticity (see e.g. or
).
Kelvin–Voigt model
The Kelvin–Voigt model, also known as the Voigt model, consists of a Newtonian damper and Hookean elastic spring connected in parallel, as shown in the picture. It is used to explain the creep behaviour of polymers.
The constitutive relation is expressed as a linear first-order differential equation:
This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain. When the stress is released, the material gradually relaxes to its undeformed state. At constant stress (creep), the model is quite realistic as it predicts strain to tend to σ/E as time continues to infinity. Similar to the Maxwell model, the Kelvin–Voigt model also has limitations. The model is extremely good with modelling creep in materials, but with regards to relaxation the model is much less accurate.
This model can be applied to organic polymers, rubber, and wood when the load is not too high.
Standard linear solid model
The standard linear solid model, also known as the Zener model, consists of two springs and a dashpot. It is the simplest model that describes both the creep and stress relaxation behaviors of a viscoelastic material properly. For this model, the governing constitutive relations are:
Under a constant stress, the modeled material will instantaneously deform to some strain, which is the instantaneous elastic portion of the strain. After that it will continue to deform and asymptotically approach a steady-state strain, which is the retarded elastic portion of the strain. Although the standard linear solid model is more accurate than the Maxwell and Kelvin–Voigt models in predicting material responses, mathematically it returns inaccurate results for strain under specific loading conditions.
Jeffreys model
The Jeffreys model like the Zener model is a three element model. It consist of two dashpots and a spring.
It was proposed in 1929 by Harold Jeffreys
Sir Harold Jeffreys, FRS (22 April 1891 – 18 March 1989) was a British geophysicist who made significant contributions to mathematics and statistics. His book, ''Theory of Probability'', which was first published in 1939, played an importan ...
to study Earth's mantle
Earth's mantle is a layer of silicate mineral, silicate rock between the Earth's crust, crust and the Earth's outer core, outer core. It has a mass of and makes up 67% of the mass of Earth. It has a thickness of making up about 46% of Earth's ...
.
Burgers model
The Burgers model consists of either two Maxwell components in parallel or a Kelvin–Voigt component, a spring and a dashpot in series. For this model, the governing constitutive relations are:
This model incorporates viscous flow into the standard linear solid model, giving a linearly increasing asymptote for strain under fixed loading conditions.
Generalized Maxwell model
The generalized Maxwell model, also known as the Wiechert model, is the most general form of the linear model for viscoelasticity. It takes into account that the relaxation does not occur at a single time, but at a distribution of times. Due to molecular segments of different lengths with shorter ones contributing less than longer ones, there is a varying time distribution. The Wiechert model shows this by having as many spring–dashpot Maxwell elements as necessary to accurately represent the distribution. The figure on the right shows the generalised Wiechert model.[Roylance, David (2001); "Engineering Viscoelasticity", 14–15]
Applications: metals and alloys at temperatures lower than one quarter of their absolute melting temperature (expressed in K).
Constitutive models for nonlinear viscoelasticity
Non-linear viscoelastic constitutive equations are needed to quantitatively account for phenomena in fluids like differences in normal stresses, shear thinning, and extensional thickening. Necessarily, the history experienced by the material is needed to account for time-dependent behavior, and is typically included in models as a history kernel K.
Second-order fluid
The second-order fluid is typically considered the simplest nonlinear viscoelastic model, and typically occurs in a narrow region of materials behavior occurring at high strain amplitudes and Deborah number between Newtonian fluids and other more complicated nonlinear viscoelastic fluids. The second-order fluid constitutive equation is given by:
where:
* is the identity tensor
* is the deformation tensor
* denote viscosity, and first and second normal stress coefficients, respectively
* denotes the upper-convected derivative of the deformation tensor where and is the material time derivative of the deformation tensor.
Upper-convected Maxwell model
The upper-convected Maxwell model incorporates nonlinear time behavior into the viscoelastic Maxwell model, given by:
where denotes the stress tensor.
Oldroyd-B model
The Oldroyd-B model is an extension of the Upper Convected Maxwell model and is interpreted as a solvent filled with elastic bead and spring dumbbells.
The model is named after its creator James G. Oldroyd.
The model can be written as:
where:
* is the stress tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
;
* is the relaxation time;
* is the retardation time = ;
* is the upper convected time derivative of stress tensor:
* is the fluid velocity;
* is the total viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
composed of solvent and polymer components, ;
* is the deformation rate tensor or rate of strain tensor,