HOME

TheInfoList



OR:

Torricelli's law, also known as Torricelli's theorem, is a theorem in
fluid dynamics In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
relating the speed of fluid flowing from a hole to the height of fluid above the hole. The law states that the speed v of efflux of a fluid through a sharp-edged hole in the wall of the tank filled to a height h above the hole is the same as the speed that a body would acquire in falling freely from a height h, v = \sqrt where g is the acceleration due to gravity. This expression comes from equating the kinetic energy gained, \tfrac mv^2, with the potential energy lost, mgh, and solving for v. The law was discovered (though not in this form) by the Italian scientist
Evangelista Torricelli Evangelista Torricelli ( ; ; 15 October 160825 October 1647) was an Italian people, Italian physicist and mathematician, and a student of Benedetto Castelli. He is best known for his invention of the barometer, but is also known for his advances i ...
, in 1643. It was later shown to be a particular case of
Bernoulli's principle Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. For example, for a fluid flowing horizontally Bernoulli's principle states that an increase in the speed occurs simultaneously with a decrease i ...
.


Derivation

Under the assumptions of an
incompressible Incompressible may refer to: * Incompressible flow, in fluid mechanics * incompressible vector field, in mathematics * Incompressible surface, in mathematics * Incompressible string, in computing {{Disambig ...
fluid with negligible
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
,
Bernoulli's principle Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. For example, for a fluid flowing horizontally Bernoulli's principle states that an increase in the speed occurs simultaneously with a decrease i ...
states that the hydraulic energy is uniform :\frac + \frac + g y_1 = \frac + \frac + g y_2 = \text throughout a column of liquid. Here v is fluid speed, g is the acceleration due to gravity, y is the height above some reference point, p is the pressure, and \rho is the density. In order to derive Torricelli's formula the first point with no index is taken at the liquid's surface, and the second just outside the opening. Since the liquid is assumed to be incompressible, \rho_1 is equal to \rho_2 and; both can be represented by one symbol \rho. The pressure p_1 and p_2 are typically both atmospheric pressure, so p_1 = p_2 \Rightarrow p_1 - p_2 = 0. Furthermore y_1 - y_2 is equal to the height h of the liquid's surface over the opening: :\frac + g h = \frac The velocity of the surface v_1 can by related to the outflow velocity v_2 by the
continuity equation A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity ...
v_1 A = v_2 A_A, where A_A is the orifice's cross section and A is the (cylindrical) vessel's cross section. Renaming v_2 to v_A (A like Aperture) gives: :\frac \frac + g h = \frac :\Rightarrow g h = \frac\left( 1 - \frac \right) . :\Rightarrow = \sqrt . Torricelli's law is obtained as a special case when the opening A_A is very small relative to the horizontal cross-section of the container A: :v_A = \sqrt. Torricelli's law can only be applied when viscous effects can be neglected which is the case for water flowing out through orifices in vessels.


Experimental verification: Spouting can experiment

Every physical theory must be verified by experiments. The spouting can experiment consists of a cylindrical vessel filled up with water and with several holes in different heights. It is designed to show that in a
liquid Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
with an open surface,
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
increases with depth. The fluid exit velocity is greater further down the vessel. The outflowing jet forms a downward parabola where every parabola reaches farther out the larger the distance between the orifice and the surface is. The shape of the parabola y(x) is only dependent on the outflow velocity and can be determined from the fact that every molecule of the liquid forms a ballistic trajectory (see projectile motion) where the initial velocity is the outflow velocity v_A: : y(x)=-\frac \frac x^2. The results confirm the correctness of Torricelli's law very well.


Discharge and time to empty a cylindrical vessel

Assuming that a vessel is cylindrical with fixed cross-sectional area A, with orifice of area A_A at the bottom, then rate of change of water level height dh/dt is not constant. The water volume in the vessel is changing due to the discharge \dot out of the vessel: :\frac = A \frac = \dot = A_A v_A = A_A \sqrt \quad \Rightarrow \quad A \frac = A_A \sqrt \; dt Integrating both sides and re-arranging, we obtain : T = \frac \sqrt, where H is the initial height of the water level and T is the total time taken to drain all the water and hence empty the vessel. This formula has several implications. If a tank with volume V with cross section A and height H, so that V = AH, is fully filled, then the time to drain all the water is : T = \frac \sqrt. This implies that high tanks with same filling volume drain faster than wider ones. Lastly, we can re-arrange the above equation to determine the height of the water level h(t) as a function of time t as : h(t) = H \left(1 - \frac \right)^2, where H is the height of the container while T is the discharge time as given above.


Discharge experiment, coefficient of discharge

The discharge theory can be tested by measuring the emptying time T or time series of the water level h(t) within the cylindrical vessel. In many cases, such experiments do not confirm the presented discharge theory: when comparing the theoretical predictions of the discharge process with measurements, very large differences can be found in such cases. In reality, the tank usually drains much more slowly. Looking at the discharge formula : \dot = A_A v_A = A_A \sqrt two quantities could be responsible for this discrepancy: the outflow velocity or the effective outflow cross section. In 1738 Daniel Bernoulli attributed the discrepancy between the theoretical and the observed outflow behavior to the formation of a vena contracta which reduces the outflow cross-section from the orifice's cross-section A_A to the contracted cross-section A_C and stated that the discharge is: : \dot = A_C v_A = A_C \sqrt Actually this is confirmed by state-of-the-art experiments (see ) in which the discharge, the outflow velocity and the cross-section of the vena contracta were measured. Here it was also shown that the outflow velocity is predicted extremely well by Torricelli's law and that no velocity correction (like a "coefficient of velocity") is needed. The problem remains how to determine the cross-section of the vena contracta. This is normally done by introducing a discharge coefficient which relates the discharge to the orifice's cross-section and Torricelli's law: : _=\mu A_A v_A \quad \text \quad \mu = \frac For low viscosity liquids (such as water) flowing out of a round hole in a tank, the discharge coefficient is in the order of 0.65. By discharging through a round tube or hose, the coefficient of discharge can be increased to over 0.9. For rectangular openings, the discharge coefficient can be up to 0.67, depending on the height-width ratio.


Applications


Horizontal distance covered by the jet of liquid

If h is height of the orifice above the ground and H is height of the liquid column from the ground (height of liquid's surface), then the horizontal distance covered by the jet of liquid to reach the same level as the base of the liquid column can be easily derived. Since h be the vertical height traveled by a particle of jet stream, we have from the laws of falling body :h = \frac gt^2 \quad \Rightarrow \quad t = \sqrt, where t is the time taken by the jet particle to fall from the orifice to the ground. If the horizontal efflux velocity is v, then the horizontal distance traveled by the jet particle during the time duration t is :D = vt = v \sqrt. Since the water level is H-h above the orifice, the horizontal efflux velocity v = \sqrt, as given by Torricelli's law. Thus, we have from the two equations :D = 2 \sqrt. The location of the orifice that yields the maximum horizontal range is obtained by differentiating the above equation for D with respect to h, and solving dD/dh = 0. Here we have :\frac = \frac. Solving dD/dh = 0, we obtain :h^* = \frac, and the maximum range :D_ = H.


Clepsydra problem

A
clepsydra Clepsydra may refer to: * Clepsydra, an alternative name for a water clock A water clock, or clepsydra (; ; ), is a timepiece by which time is measured by the regulated flow of liquid into (inflow type) or out from (outflow type) a vessel, an ...
is a clock that measures time by the flow of water. It consists of a pot with a small hole at the bottom through which the water can escape. The amount of escaping water gives the measure of time. As given by the Torricelli's law, the rate of efflux through the hole depends on the height of the water; and as the water level diminishes, the discharge is not uniform. A simple solution is to keep the height of the water constant. This can be attained by letting a constant stream of water flow into the vessel, the overflow of which is allowed to escape from the top, from another hole. Thus having a constant height, the discharging water from the bottom can be collected in another cylindrical vessel with uniform graduation to measure time. This is an inflow clepsydra. Alternatively, by carefully selecting the shape of the vessel, the water level in the vessel can be made to decrease at constant rate. By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high. That is, the radius should be larger when the water level is higher. Let the radius r increase with the height of the water level h above the exit hole of area a. That is, r = f(h). We want to find the radius such that the water level has a constant rate of decrease, i.e. dh/dt = c. At a given water level h, the water surface area is A = \pi r^2 . The instantaneous rate of change in water volume is :\frac = A \frac = \pi r^2 c. From Torricelli's law, the rate of outflow is :\frac = A_A v = A_A \sqrt, From these two equations, : \begin A_A \sqrt &= \pi r^2 c \\ \Rightarrow \quad h &= \frac r^4. \end Thus, the radius of the container should change in proportion to the quartic root of its height, r \propto \sqrt Likewise, if the shape of the vessel of the outflow clepsydra cannot be modified according to the above specification, then we need to use non-uniform graduation to measure time. The emptying time formula above tells us the time should be calibrated as the square root of the discharged water height, T \propto \sqrt. More precisely, : \Delta t = \frac \sqrt (\sqrt - \sqrt) where \Delta t is the time taken by the water level to fall from the height of h_1 to height of h_2.


Torricelli's original derivation

Evangelista Torricelli's original derivation can be found in work "De motu aquarum", which is an appendix to the second of the three main works of his "Opera Geometrica", titled "De motu gravium". He assumes the law as a supposition which he tries to prove experimentally, writing: "Let us suppose that the water, which exits violently from an orifice has, in that point the same impetus as a heavy body, or a drop of that water which falls from the liquid's surface until the orifice." He claims that experience confirms this principle, as follows. He starts a tube AB (Figure (a)) filled up with water to the level A. Then a narrow opening is drilled at the level of B and connected to a second vertical tube BC. Due to the hydrostatic principle of communicating vessels the water lifts up to the same filling level AC in both tubes (Figure (b)). When finally the tube BC is removed (Figure (c)) the water should again lift up to this height, which is named AD in Figure (c). The reason for that behavior is the fact that a droplet's falling velocity from a height A to B is equal to the initial velocity that is needed to lift up a droplet from B to A. When performing such an experiment only the height C (instead of D in figure (c)) will be reached which contradicts the proposed theory. Torricelli attributes this defect to the air resistance and to the fact that the descending drops collide with ascending drops. Torricelli's argumentation is, as a matter of fact, wrong because the pressure in free jet is the surrounding atmospheric pressure, while the pressure in a communicating vessel is the hydrostatic pressure. At that time the concept of pressure was unknown.


See also

* Darcy's law *
Dynamic pressure In fluid dynamics, dynamic pressure (denoted by or and sometimes called velocity pressure) is the quantity defined by:Clancy, L.J., ''Aerodynamics'', Section 3.5 :q = \frac\rho\, u^2 where (in SI units): * is the dynamic pressure in pascals ...
*
Fluid statics In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot r ...
*
Hagen–Poiseuille equation In fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing t ...
*
Helmholtz's theorems In fluid mechanics, Helmholtz's theorems, named after Hermann von Helmholtz, describe the three-dimensional motion of fluid in the vicinity of vortex lines. These theorems apply to inviscid flows and flows where the influence of viscous forces ...
* Kirchhoff equations * Knudsen equation * Manning equation * Mild-slope equation * Morison equation *
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
* Oseen flow *
Pascal's law Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid su ...
* Poiseuille's law *
Potential flow In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity pre ...
*
Pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
*
Static pressure In fluid mechanics the term static pressure refers to a term in Bernoulli's equation written words as ''static pressure + dynamic pressure = total pressure''. Since pressure measurements at any single point in a fluid always give the static pres ...
*
Pressure head In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head (but not ''sta ...
* Relativistic Euler equations *
Reynolds decomposition In fluid dynamics and turbulence theory, Reynolds decomposition is a mathematical technique used to separate the expectation value of a quantity from its fluctuations. Decomposition For example, for a quantity u the decomposition would be u(x,y,z ...
*
Stokes flow Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion,Kim, S. & Karrila, S. J. (2005) ''Microhydrodynamics: Principles and Selected Applications'', Dover. . is a type of fluid flow where advection, advec ...
*
Stokes stream function In fluid dynamics, the Stokes stream function is used to describe the Streamlines, streaklines, and pathlines, streamlines and flow velocity in a three-dimensional incompressible flow with axisymmetry. A surface with a constant value of the Stokes ...
*
Stream function In fluid dynamics, two types of stream function (or streamfunction) are defined: * The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, is defined for incompressible flow, incompressible (divergence-free ...
*
Streamlines, streaklines and pathlines Streamlines, streaklines and pathlines are field lines in a fluid flow. They differ only when the flow changes with time, that is, when the flow is not steady. Considering a velocity vector field in three-dimensional space in the framework of ...


References


Further reading

* * Stanley Middleman, ''An Introduction to Fluid Dynamics: Principles of Analysis and Design'' (
John Wiley & Sons John Wiley & Sons, Inc., commonly known as Wiley (), is an American Multinational corporation, multinational Publishing, publishing company that focuses on academic publishing and instructional materials. The company was founded in 1807 and pr ...
, 1997) * {{DEFAULTSORT:Torricelli's Law Eponymous theorems of physics Fluid dynamics Physics experiments