Origin
The popular use of the term ''technical diving'' can be traced back to the cover story of the first issue of aquaCorps magazine (1990–1996), in early 1990, titled ''Call it "High-Tech" Diving'' by Bill Hamilton, describing the current state of recreational diving beyond the generally accepted limits, such as deep, decompression and mixed gas diving. By mid-1991, the magazine was using the term ''technical diving'', as an analogy to the established term ''technical (rock) climbing''. More recently, recognizing that the term was already in use by theThere are places that no one has been to since the dawn of time. We can’t see what’s there. We can see what’s on the dark side of the moon or what’s on Mars, but you can’t see what’s in the back of a cave unless you go there.The urge to go where no one has gone before has always been a driving force for explorers, and the 1980s was a time of intense exploration by the cave-diving community, some of whom were doing relatively long air dives in the 60–125 m depth range, and doing decompression on oxygen. The details of many of these dives were not disclosed by the divers as these dives were considered experimental and dangerous. The divers who conducted these dives did not consider them suitable for the ordinary person, but necessary to extend the frontiers of exploration, and there were no consensus guidelines for scuba diving beyond 40 m.
Sheck Exley, ''Exley on Mix'', aquaCorps #4, Jan 1992
Definition
Scope
The following table gives an overview of the activities that various agencies suggest to differentiate between technical and recreational diving:Hazards and risk
One of the perceived differences between technical and other forms of recreational diving is the associated hazards, of which there are more associated with technical diving, and risk, which is often, but not always greater in technical diving. Hazards are the circumstances that may cause harm, and risk is the likelihood of the harm actually occurring. The hazards are partly due to the extended scope of technical diving, and partly associated with the equipment used. In some cases, the equipment used presents a secondary risk while mitigating a primary risk, such as the complexity of gas management needed to reduce the risk of a fatal gas supply failure, or the use of gases potentially unbreathable for some parts of a dive profile to reduce the risk of harm caused by oxygen toxicity, nitrogen narcosis or decompression sickness for the whole operation. Reduction of secondary risks may also affect equipment choice, but is largely skill-based. Training of technical divers includes procedures that are known from experience to be effective in handling the most common contingencies. Divers proficient in these emergency drills are less likely to be overwhelmed by the circumstances when things do not go according to plan, and are less likely to panic.Depth
Technical dives may be defined as being dives deeper than about or dives in an overhead environment with no direct access to the surface or natural light. Such environments may include fresh and saltwater caves and the interiors of shipwrecks. In many cases, technical dives also include planned decompression carried out over a number of stages during a controlled ascent to the surface at the end of the dive. The depth-based definition is based on risk caused by the progressive impairment of mental competence with the increasing partial pressure of respired nitrogen. Breathing air under pressure causes nitrogen narcosis that usually starts to become a problem at depths of or greater, but this differs between divers. Increased depth also increases theInability to ascend directly
Technical dives may alternatively be defined as dives where the diver cannot safely ascend directly to the surface either due to a mandatory decompression stop or a physical ceiling. This form of diving implies a much greater reliance on the redundancy of critical life support equipment and procedural training since the diver must stay underwater until it is safe to ascend or the diver has successfully exited the overhead environment.Decompression stops
Physical ceiling
These types of physical overhead, or "hard" or "environmental" ceiling can prevent the diver from surfacing directly: * Cave diving – diving into a cave system. * Ice diving – diving under ice. * Wreck diving – diving inside a shipwreck. * Diving under any other form of overhead physical obstruction to a direct ascent to the free surface, such as under the hull of a ship or under a harbour or offshore structure or a net. In all of these situations, a guide line or from the exit to the diver is the standard method of reducing the risk of being unable to find the way out. A lifeline fixed to the diver is more reliable as it is not easy to lose, and is often used when diving under ice, where the line is unlikely to snag and the distance is reasonably short, and can be tended by a person at the surface. Static guidelines are more suitable when a lifeline is likely to snag on the environment or on other divers in the group, and may be left ''in situ'' to be used for other dives, or recovered on the way out by winding back onto the reel. Guidelines may be very much longer than lifelines, and may be branched and marked. They are used as standard practice for cave diving and wreck penetration.Extremely limited visibility
Technical dives in waters where the diver's vision is severely impeded by low-visibility conditions, caused by turbidity or silt out and low light conditions due to depth or enclosure, require greater competence. The combination of low visibility and strong current can make dives in these conditions extremely hazardous, particularly in an overhead environment, and greater skill and reliable and familiar equipment are needed to manage this risk. Limited visibility diving can cause disorientation, potentially leading to loss of sense of direction, loss of effective buoyancy control, etc. Divers in extremely limited visibility situations depend on their instruments such as dive lights, pressure gauges, compass, depth gauge, bottom timer, dive computer, etc., and guidelines for orientation and information. Training for cave and wreck diving includes techniques for managing extreme low visibility, as finding the way out of an overhead environment before running out of gas is a safety-critical skill.Equipment
Equipment configuration
Gas mixes
Technical diving can be done using air as a breathing gas, but other breathing gas mixtures are commonly used to manage specific problems. Some additional knowledge is required to understand the effects of these gases on the body during a dive and additional skills are needed to safely manage their use.Deep air/extended range diving
One of the more divisive subjects in technical diving concerns using compressed air as a breathing gas on dives below . Some training agencies still promote and teach courses using air up to depths of 60m. These include TDI, IANTD and DSAT/PADI. Others, including NAUI Tec, GUE, ISE and UTD consider that diving deeper than , depending upon agency, on air is unacceptably risky. They promote the use of mixtures containing helium to limit the apparent narcotic depth to their agency specified limit should be used for dives beyond a certain limit. Even though TDI and IANTD teach courses using air up to depths of 60m, they also offer courses include "helitrox" "recreational trimix" and "advance recreational trimix" that also use mixtures containing helium to mitigate narcotic concerns when the diving depth is limited to 30-45m. Such courses used to be referred to as "deep air" courses, but are now commonly called "extended range" courses. The 130 ft limit entered the recreation and technical communities in the USA from the military diving community where it was the depth at which the US Navy recommended shifting from scuba to surface-supplied air. The American scientific diving community represented by the American Academy of Underwater Sciences (AAUS) has never specified a 130-foot limit in its protocols and has never experienced any accidents or injuries during air dives between 130 feet and the deepest air dives that the American scientific diving community permits, 190 feet, where the U.S. Navy Standard Air Tables shifts to the Exceptional Exposure Tables. In Europe, some countries set the recreational diving limit at , and that corresponds with the limit also imposed in some professional fields, such as police divers in the UK. The major French agencies all teach diving on air to as part of their standard recreational certifications. Deep air proponents base the depth limit of air diving upon the risk of oxygen toxicity. Accordingly, they view the limit as being the depth at which partial pressure of oxygen reaches 1.4 ATA, which occurs at about . Both sides of the community tend to present self-supporting data. Divers trained and experienced in deep air diving report fewer problems with narcosis than those trained and experienced in mixed gas diving trimix/heliox, though scientific evidence does not show that a diver can train to overcome any measure of narcosis at a given depth or become tolerant of it. The Divers Alert Network does not endorse or reject deep air diving but does note the additional risks involved.Mixtures to reduce decompression time
Nitrox is a popular diving gas mix, that reduces the maximum allowable depth as compared to air. Nitrox also allows greater bottom time and shorter surface intervals by reducing the buildup of nitrogen in the diver's tissues. This is accomplished by increasing the percentage ofMixtures to reduce nitrogen narcosis
Increased pressure due to depth causes nitrogen to become narcotic, resulting in a reduced ability to react or think clearly. By adding helium to the breathing mix, these effects can be reduced, as helium does not have the same narcotic properties at depth. Helitrox/triox proponents argue that the defining risk for air and nitrox diving depth should be nitrogen narcosis, and suggest that when the partial pressure of nitrogen reaches approximately 4.0 ATA, which occurs at about for air, helium is necessary to limit the effects of the narcosis.Mixtures to reduce oxygen toxicity
Technical dives may also be characterised by the use of hypoxic breathing gas mixtures, including hypoxic trimix, heliox, and heliair. A diver breathing normal air (with 21% oxygen) will be exposed to increased risk of central nervous system oxygen toxicity at depths greater than about The first sign of oxygen toxicity is usually a convulsion without warning which usually results in death when the demand valve mouthpiece falls out and the victim drowns. Sometimes the diver may get warning symptoms before the convulsion. These can include visual and auditory hallucinations, nausea, twitching (especially in the face and hands), irritability and mood swings, and dizziness. These gas mixes can also lower the level of oxygen in the mix to reduce the danger of oxygen toxicity. Once the oxygen is reduced below about 18% the mix is known as a hypoxic mix as it does not contain enough oxygen to be used safely at the surface.Safety
Technical diving encompasses multiple aspects of diving, that typically share a lack of direct access to the surface, which may be caused by physical constraints, like an overhead environment, or physiological, like decompression obligation. In case of emergency, therefore, the diver or diving team must be able to troubleshoot and solve the problem underwater. This requires planning, situational awareness, and redundancy in critical equipment, and is facilitated by skill and experience in appropriate procedures for managing reasonably foreseeable contingencies. Some rebreather diving safety issues can be addressed by training, others may require a change in technical diver culture. A major safety issue is that many divers become complacent as they become more familiar with the equipment, and begin to neglect predive checklists while assembling and preparing the equipment for use - procedures that are officially part of all rebreather training programs. There can also be a tendency to neglect post-dive maintenance, and some divers will dive knowing that there are functional problems with the unit, because they know that there is generally redundancy designed into the system. This redundancy is intended to allow a safe termination of the dive if it occurs underwater, by eliminating a critical failure point. Diving with a unit that already has a malfunction, means that there is a single critical point of failure in that unit, which could cause a life-threatening emergency if another item in the critical path were to fail. The risk may increase by orders of magnitude.Accident modes
Several factors have been identified as predispositions to accidents in technical diving. The techniques and equipment are complex, which increases the risk of errors or omissions - the task loading for a closed circuit rebreather diver during critical phases of a dive is greater than for open circuit scuba equipment, The circumstances of technical diving generally mean that errors or omissions are likely to have more serious consequences than in normal recreational diving, and there is a tendency towards competitiveness and risk-taking among many technical divers which appears to have contributed to some well-publicized accidents. Some errors and failures that have repeatedly been implicated in technical diving accidents include: * Incorrect gas switches in open circuit diving; The gas could be hypoxic, with a risk of blackout, hyperoxic, with a risk of oxygen toxicity seizure, or have an excessively high partial pressure of nitrogen, with a risk of nitrogen narcosis. * Having an incorrect gas in a cylinder resulting in hypoxia, hyperoxia, nitrogen narcosis or inadequate decompression, usually a consequence of failure to analyse all the mixes; * Incorrect gas consumption calculations and failure to monitor use and change plans during the dive, causing running out of gas before the end of the dive; * Losing staged decompression gas which was cached to be picked up later; * The development of an insufficient or excessive oxygen partial pressure in the loop of closed or semi-closed circuit rebreathers; * High CO2 levels in the breathing loop of rebreathers due to scrubber breakthrough; * Flooding of the rebreather loop rendering it unusable; * Failure to control depth. Failure to control depth is critical during decompression, where the inability to stay at the correct depth due to excessive buoyancy is associated with a high risk of decompression sickness and a raised risk of barotrauma of ascent. There are several ways that excessive buoyancy can be caused, some of which can be managed by the diver if prompt and correct action is taken, and others that cannot be corrected. This problem may be caused by poor planning, in that the diver may underestimate the weight loss of using up the breathing gas in all the cylinders, by losing ballast weights during the dive, or by inflation problems with buoyancy compensator or drysuit, or both. Insufficient ballast weight to allow neutral buoyancy at the shallowest decompression stop with nearly empty cylinders is an example of a buoyancy problem that can generally not be corrected by the diver. If an empty cylinder is positively buoyant, the diver may jettison it and allow it to float away, but if the empty cylinders are negatively buoyant, jettisoning them will exacerbate the problem, making the diver even more buoyant. Drysuit and buoyancy compensator inflation can cause runaway ascent, which can usually be managed if corrected immediately. If the initial problem is caused by loss of ballast weights or a reel jam when deploying an inflatable decompression buoy, and the reel is clipped on, the diver may not be able to manage several simultaneously accelerating buoyancy malfunctions. Dual bladder buoyancy compensators can contain air inadvertently added to the backup bladder, which the diver does not release as it is not supposed to be there in the first place. All of these failures can be either avoided altogether or the risk minimized by configuration choices, procedural methods, and correct response to the initial problem. Failure to control depth due to insufficient buoyancy can also lead to scuba accidents. It is less of a problem with surface-supplied diving as the depth that the diver can sink to is limited by the umbilical length, and a sudden or rapid descent can often be quickly stopped by the tender. In early diving using copper helmets and a limited flow air supply, a sudden rapid descent could lead to severe helmet squeeze, but this is prevented by demand-supplied gas, and neck dams on later helmets, which allow water to flood the helmet until the gas supply catches up with the compression. Surface supply ensures that the gas supply will not run out suddenly due to high demand, which can deplete scuba supply to the extent that there may not be enough left to surface according to plan. Any sudden increase in depth can also cause barotrauma of the ears and sinuses if the diver cannot equalize fast enough.Accident statistics
There is very little reliable data describing the demographics, activities and accidents of the technical diving population. Conclusions about accident rates must be considered tentative. The 2003 DAN report on decompression illness and dive fatalities indicates that 9.8% of all cases of decompression illness and 20% of diving fatalities in the USA happened to technical divers. It is not known how many technical dives this was spread over, but it was considered likely that technical divers are at greater risk. The techniques and associated equipment that have been developed to overcome the limitations of conventional single-cylinder, open-circuit scuba diving are necessarily more complex and subject to error, and technical dives are often done in more dangerous environments, so the consequences of an error or malfunction are greater. Although the skill levels and training of technical divers are generally significantly higher than those of recreational divers, there are indications that technical divers, in general, are at higher risk, and that closed circuit rebreather diving may be particularly dangerous.Operations
Relatively complex technical diving operations may be planned and run like an expedition, or professional diving operation, with surface and in-water support personnel providing direct assistance or on stand-by to assist the expedition divers. Surface support might include surface stand-by divers, boat crew, porters, emergency medical personnel, and gas blenders. In-water support may provide supplementary breathing gas, monitor divers during long decompression stops, and provide communications services between the surface team and the expedition divers. In some cases the risk assessment may persuade the dive team to use similar equipment to that used in professional diving, such as ROV monitoring or the use of a stage or wet bell for the ascent and descent, and having a decompression chamber available at the surface. In an emergency, the support team would provide rescue and if necessary search and recovery assistance.Training
Certification
Technical diving certification is issued by several recreational diver training agencies, under a variety of names, often with considerable overlap or in some cases split into depth ranges. The certification titles vary between agencies but can be categorized as: *, a scuba diver certified as competent to dive in open water using open circuit nitrogen-based gas mixtures that are safe to breathe at atmospheric pressure, and decompress using approved schedules on gases carried by the diver, usually including oxygen or oxygen-rich nitrox *, a scuba diver certified as competent to dive in open water using open circuit trimix gases which are safe to breathe at atmospheric pressure, and decompress using approved schedules, on gases carried by the diver, usually including oxygen or oxygen-rich nitrox. *, or , a scuba diver certified as competent to dive in open water using open circuit trimix gases which are not safe to breathe at atmospheric pressure, to use a travel gas to descend through the depth range in which the bottom gas is unsafe, and decompress using approved schedules, on gases carried by the diver, usually including oxygen or oxygen-rich nitrox. * Rebreather certification for various types of diving rebreather. Training in the use of rebreathers has two components: Generic training for the class of rebreather, including the theory of operation, general procedures as well as specific training for the model of rebreather; which covers the details of preparation, testing, user maintenance, and troubleshooting, and those details of normal operating and emergency procedures which are specific to the model of rebreather. Crossover training from one model to another generally only requires the second aspect if the equipment is similar in design and operation. **Nitrox semi-closed circuit rebreather diver, **Nitrox closed circuit rebreather diver, **Mixed gas rebreather diver. This may distinguish between normoxic and hypoxic depth ranges. * Cave diver, of various grades, * Wreck penetration diver, of various grades,See also
* * * * * * *References
Footnotes
External links
*