HOME

TheInfoList



OR:

Astronomical spectroscopy is the study of
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
using the techniques of
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
to measure the
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, including
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
,
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
,
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
,
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
and
radio Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
waves that radiate from
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the
Doppler shift The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s,
nebula A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in ...
e,
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
, and
active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such e ...
.


Background

Astronomical spectroscopy is used to measure three major bands of radiation in the electromagnetic spectrum:
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
,
radio wave Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s, and
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s. While all spectroscopy looks at specific bands of the spectrum, different methods are required to acquire the signal depending on the frequency.
Ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
(O3) and molecular oxygen (O2) absorb light with wavelengths under 300 nm, meaning that X-ray and
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
spectroscopy require the use of a satellite telescope or rocket mounted detectors. Radio signals have much longer wavelengths than optical signals, and require the use of antennas or radio dishes.
Infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light is absorbed by atmospheric water and carbon dioxide, so while the equipment is similar to that used in optical spectroscopy, satellites are required to record much of the infrared spectrum.


Optical spectroscopy

Physicists have been looking at the solar spectrum since
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
first used a simple prism to observe the refractive properties of light. In the early 1800s
Joseph von Fraunhofer Joseph Ritter von Fraunhofer (; ; 6 March 1787 – 7 June 1826) was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He developed diffraction grating and also invented the ...
used his skills as a glassmaker to create very pure prisms, which allowed him to observe 574 dark lines in a seemingly continuous spectrum. Soon after this, he combined telescope and prism to observe the spectrum of
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
, the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
,
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
, and various stars such as
Betelgeuse Betelgeuse is a red supergiant star in the constellation of Orion (constellation), Orion. It is usually the List of brightest stars, tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It i ...
; his company continued to manufacture and sell high-quality refracting telescopes based on his original designs until its closure in 1884. The resolution of a prism is limited by its size; a larger prism will provide a more detailed spectrum, but the increase in mass makes it unsuitable for highly detailed work. This issue was resolved in the early 1900s with the development of high-quality reflection gratings by J.S. Plaskett at the Dominion Observatory in Ottawa, Canada. Light striking a mirror will reflect at the same angle, however a small portion of the light will be refracted at a different angle; this is dependent upon the indices of refraction of the materials and the wavelength of the light. By creating a "blazed" grating which utilizes a large number of parallel mirrors, the small portion of light can be focused and visualized. These new spectroscopes were more detailed than a prism, required less light, and could be focused on a specific region of the spectrum by tilting the grating. The limitation to a blazed grating is the width of the mirrors, which can only be ground a finite amount before focus is lost; the maximum is around 1000 lines/mm. In order to overcome this limitation holographic gratings were developed. Volume phase holographic gratings use a thin film of dichromated gelatin on a glass surface, which is subsequently exposed to a wave pattern created by an
interferometer Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber opt ...
. This wave pattern sets up a reflection pattern similar to the blazed gratings but utilizing Bragg diffraction, a process where the angle of reflection is dependent on the arrangement of the atoms in the gelatin. The holographic gratings can have up to 6000 lines/mm and can be up to twice as efficient in collecting light as blazed gratings. Because they are sealed between two sheets of glass, the holographic gratings are very versatile, potentially lasting decades before needing replacement. Light dispersed by the grating or prism in a
spectrograph An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
can be recorded by a detector. Historically,
photographic plate Photographic plates preceded film as the primary medium for capturing images in photography. These plates, made of metal or glass and coated with a light-sensitive emulsion, were integral to early photographic processes such as heliography, d ...
s were widely used to record spectra until electronic detectors were developed, and today optical spectrographs most often employ
charge-coupled device A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a ...
s (CCDs). The wavelength scale of a spectrum can be
calibrated In measurement technology and metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of known ...
by observing the spectrum of
emission line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used ...
s of known wavelength from a
gas-discharge lamp Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionization, ionized gas, a plasma (physics), plasma. Typically, such lamps use a noble gas (argon, neon, krypton, and x ...
. The
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
scale of a spectrum can be calibrated as a function of wavelength by comparison with an observation of a standard star with corrections for atmospheric absorption of light; this is known as
spectrophotometry Spectrophotometry is a branch of electromagnetic spectroscopy concerned with the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength. Spectrophotometry uses photometers, known as spe ...
.


Radio spectroscopy

Radio astronomy Radio astronomy is a subfield of astronomy that studies Astronomical object, celestial objects using radio waves. It started in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observat ...
was founded with the work of
Karl Jansky Karl Guthe Jansky (October 22, 1905 – February 14, 1950) was an American physicist and radio engineer who in April 1933 first announced his discovery of radio waves emanating from the Milky Way in the constellation Sagittarius. He is consider ...
in the early 1930s, while working for
Bell Labs Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
. He built a radio antenna to look at potential sources of interference for transatlantic radio transmissions. One of the sources of noise discovered came not from Earth, but from the center of the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, in the constellation Sagittarius. In 1942, JS Hey captured the Sun's radio frequency using military radar receivers. Radio spectroscopy started with the discovery of the 21-centimeter H I line in 1951.


Radio interferometry

Radio interferometry was pioneered in 1946, when Joseph Lade Pawsey, Ruby Payne-Scott and Lindsay McCready used a single antenna atop a sea cliff to observe 200 MHz solar radiation. Two incident beams, one directly from the sun and the other reflected from the sea surface, generated the necessary interference. The first multi-receiver interferometer was built in the same year by Martin Ryle and Vonberg. In 1960, Ryle and
Antony Hewish Antony Hewish (11 May 1924 – 13 September 2021) was a British radio astronomer who won the Nobel Prize for Physics in 1974 (together with fellow radio-astronomer Martin Ryle) for his role in the discovery of pulsars. He was also awarded the ...
published the technique of
aperture synthesis Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation and ...
to analyze interferometer data. The aperture synthesis process, which involves autocorrelating and
discrete Fourier transform In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
ing the incoming signal, recovers both the spatial and frequency variation in flux. The result is a 3D image whose third axis is frequency. For this work, Ryle and Hewish were jointly awarded the 1974
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
.


X-ray spectroscopy


Stars and their properties


Chemical properties

Newton used a prism to split white light into a spectrum of color, and Fraunhofer's high-quality prisms allowed scientists to see dark lines of an unknown origin. In the 1850s,
Gustav Kirchhoff Gustav Robert Kirchhoff (; 12 March 1824 – 17 October 1887) was a German chemist, mathematician, physicist, and spectroscopist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body ...
and
Robert Bunsen Robert Wilhelm Eberhard Bunsen (; 30 March 1811 – 16 August 1899) was a German chemist. He investigated emission spectra of heated elements, and discovered caesium (in 1860) and rubidium (in 1861) with the physicist Gustav Kirchhoff. The Bu ...
described the phenomena behind these dark lines. Hot solid objects produce light with a
continuous spectrum In the physical sciences, the term ''spectrum'' was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersion (optics), dispersed through a prism (optics), prism. ...
, hot gases emit light at specific wavelengths, and hot solid objects surrounded by cooler gases show a near-continuous spectrum with dark lines corresponding to the emission lines of the gases. By comparing the absorption lines of the Sun with emission spectra of known gases, the chemical composition of stars can be determined. The major
Fraunhofer lines The Fraunhofer lines are a set of spectral absorption lines. They are dark absorption lines, seen in the optical spectrum of the Sun, and are formed when atoms in the solar atmosphere absorb light being emitted by the solar photosphere. The l ...
, and the elements with which they are associated, appear in the following table. Designations from the early
Balmer Series The Balmer series, or Balmer lines in atomic physics, is one of a set of hydrogen spectral series, six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empiri ...
are shown in parentheses. Not all of the elements in the Sun were immediately identified. Two examples are listed below: *In 1868
Norman Lockyer Sir Joseph Norman Lockyer (17 May 1836 – 16 August 1920) was an English scientist and astronomer. Along with the French scientist Pierre Janssen, he is credited with discovering the gas helium. Lockyer also is remembered for being the fo ...
and
Pierre Janssen Pierre Jules César Janssen (22 February 1824 – 23 December 1907), usually known as Jules Janssen, was a French astronomer who, along with English scientist Joseph Norman Lockyer, is credited with discovering the gaseous nature of the solar ...
independently observed a line next to the sodium doublet (D1 and D2) which Lockyer determined to be a new element. He named it
Helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, but it wasn't until 1895 the element was found on Earth. *In 1869 the astronomers
Charles Augustus Young Charles Augustus Young (December 15, 1834 – January 4, 1908) one of the foremost solar spectroscopist astronomers in the United States. He observed solar eclipses and worked on spectroscopy of the Sun. He observed a solar flare with a spe ...
and William Harkness independently observed a novel green emission line in the Sun's corona during an eclipse. This "new" element was incorrectly named coronium, as it was only found in the corona. It was not until the 1930s that Walter Grotrian and Bengt Edlén discovered that the spectral line at 530.3 nm was due to highly ionized iron (Fe13+). Other unusual lines in the coronal spectrum are also caused by highly charged ions, such as
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
and
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
, the high ionization being due to the extreme temperature of the
solar corona In astronomy, a corona (: coronas or coronae) is the outermost layer of a star's Stellar atmosphere, atmosphere. It is a hot but relatively luminosity, dim region of Plasma (physics), plasma populated by intermittent coronal structures such as so ...
. To date more than 20 000 absorption lines have been listed for the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
between 293.5 and 877.0 nm, yet only approximately 75% of these lines have been linked to elemental absorption. By analyzing the equivalent width of each spectral line in an emission spectrum, both the elements present in a star and their relative abundances can be determined. Using this information stars can be categorized into stellar populations; Population I stars are the youngest stars and have the highest metal content (the Sun is a Pop I star), while Population III stars are the oldest stars with a very low metal content.


Temperature and size

In 1860
Gustav Kirchhoff Gustav Robert Kirchhoff (; 12 March 1824 – 17 October 1887) was a German chemist, mathematician, physicist, and spectroscopist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body ...
proposed the idea of a
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is ...
, a material that emits electromagnetic radiation at all wavelengths. In 1894
Wilhelm Wien Wilhelm Carl Werner Otto Fritz Franz Wien (; 13 January 1864 – 30 August 1928) was a German physicist who used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any te ...
derived an expression relating the temperature (T) of a black body to its peak emission wavelength (λmax): :\lambda_\text T = b ''b'' is a constant of proportionality called ''Wien's displacement constant'', equal to This equation is called Wien's Law. By measuring the peak wavelength of a star, the surface temperature can be determined. For example, if the peak wavelength of a star is 502 nm the corresponding temperature will be 5772
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s. The
luminosity Luminosity is an absolute measure of radiated electromagnetic radiation, electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electroma ...
of a star is a measure of the
electromagnetic energy In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radia ...
output in a given amount of time. Luminosity (L) can be related to the temperature (T) of a star by: :L= 4 \pi R^2 \sigma T^4 , where R is the radius of the star and σ is the Stefan–Boltzmann constant, with a value of Thus, when both luminosity and temperature are known (via direct measurement and calculation) the radius of a star can be determined.


Galaxies

The spectra of
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
look similar to stellar spectra, as they consist of the combined light of billions of stars. Doppler shift studies of
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. Clusters consist of galax ...
s by Fritz Zwicky in 1937 found that the galaxies in a cluster were moving much faster than seemed to be possible from the mass of the cluster inferred from the visible light. Zwicky hypothesized that there must be a great deal of non-luminous matter in the galaxy clusters, which became known as
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
. Since his discovery, astronomers have determined that a large portion of galaxies (and most of the universe) is made up of dark matter. In 2003, however, four galaxies (NGC 821, NGC 3379, NGC 4494, and NGC 4697) were found to have little to no dark matter influencing the motion of the stars contained within them; the reason behind the lack of dark matter is unknown. In the 1950s, strong radio sources were found to be associated with very dim, very red objects. When the first spectrum of one of these objects was taken there were absorption lines at wavelengths where none were expected. It was soon realised that what was observed was a normal galactic spectrum, but highly red shifted. These were named ''quasi-stellar radio sources'', or
quasars A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
, by Hong-Yee Chiu in 1964. Quasars are now thought to be galaxies formed in the early years of our universe, with their extreme energy output powered by super-massive
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s. The properties of a galaxy can also be determined by analyzing the stars found within them. NGC 4550, a galaxy in the Virgo Cluster, has a large portion of its stars rotating in the opposite direction as the other portion. It is believed that the galaxy is the combination of two smaller galaxies that were rotating in opposite directions to each other. Bright stars in galaxies can also help determine the distance to a galaxy, which may be a more accurate method than
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different sightline, lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to perspective (graphica ...
or
standard candles The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible ...
.


Interstellar medium

The interstellar medium is matter that occupies the space between
star systems A star system or stellar system is a small number of stars that orbit each other, bound by gravitational attraction. It may sometimes be used to refer to a single star. A large group of stars bound by gravitation is generally called a ''st ...
in a galaxy. 99% of this matter is gaseous –
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
,
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, and smaller quantities of other ionized elements such as
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. The other 1% is dust particles, thought to be mainly
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
,
silicate A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
s, and ices. Clouds of the dust and gas are referred to as
nebula A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in ...
e. There are three main types of nebula: absorption, reflection, and emission nebulae. Absorption (or dark) nebulae are made of dust and gas in such quantities that they obscure the starlight behind them, making
photometry Photometry can refer to: * Photometry (optics), the science of measurement of visible light in terms of its perceived brightness to human vision * Photometry (astronomy), the measurement of the flux or intensity of an astronomical object's electr ...
difficult. Reflection nebulae, as their name suggest, reflect the light of nearby stars. Their spectra are the same as the stars surrounding them, though the light is bluer; shorter wavelengths scatter better than longer wavelengths. Emission nebulae emit light at specific wavelengths depending on their chemical composition.


Gaseous emission nebulae

In the early years of astronomical spectroscopy, scientists were puzzled by the spectrum of gaseous nebulae. In 1864 William Huggins noticed that many nebulae showed only emission lines rather than a full spectrum like stars. From the work of Kirchhoff, he concluded that nebulae must contain "enormous masses of luminous gas or vapour." However, there were several emission lines that could not be linked to any terrestrial element, brightest among them lines at 495.9 nm and 500.7 nm. These lines were attributed to a new element,
nebulium Nebulium was a proposed chemical element, element found in astronomical observation of a nebula by William Huggins in 1864. The strong green emission spectrum, emission lines of the Cat's Eye Nebula, discovered using spectroscopy, led to the post ...
, until Ira Bowen determined in 1927 that the emission lines were from highly ionised oxygen (O+2). These emission lines could not be replicated in a laboratory because they are forbidden lines; the low density of a nebula (one atom per cubic centimetre) allows for
metastable In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
ions to decay via forbidden line emission rather than collisions with other atoms. Not all emission nebulae are found around or near stars where solar heating causes ionisation. The majority of gaseous emission nebulae are formed of neutral hydrogen. In the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
neutral hydrogen has two possible spin states: the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
has either the same spin or the opposite spin of the
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
. When the atom transitions between these two states, it releases an emission or absorption line of 21 cm. This line is within the radio range and allows for very precise measurements: *Velocity of the cloud can be measured via
Doppler shift The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
*The intensity of the 21 cm line gives the density and number of atoms in the cloud *The temperature of the cloud can be calculated Using this information, the shape of the Milky Way has been determined to be a
spiral galaxy Spiral galaxies form a galaxy morphological classification, class of galaxy originally described by Edwin Hubble in his 1936 work ''The Realm of the Nebulae''
, though the exact number and position of the spiral arms is the subject of ongoing research.


Complex molecules

Dust and molecules in the interstellar medium not only obscures photometry, but also causes absorption lines in spectroscopy. Their spectral features are generated by transitions of component electrons between different energy levels, or by rotational or vibrational spectra. Detection usually occurs in radio, microwave, or infrared portions of the spectrum. The chemical reactions that form these molecules can happen in cold, diffuse clouds or in dense regions illuminated with
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light. Most known compounds in space are organic, ranging from small molecules e.g.
acetylene Acetylene (Chemical nomenclature, systematic name: ethyne) is a chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is u ...
C2H2 and
acetone Acetone (2-propanone or dimethyl ketone) is an organic compound with the chemical formula, formula . It is the simplest and smallest ketone (). It is a colorless, highly Volatile organic compound, volatile, and flammable liquid with a charact ...
(CH3)2CO; to entire classes of large molecule e.g.
fullerenes A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- ...
and
polycyclic aromatic hydrocarbon A Polycyclic aromatic hydrocarbon (PAH) is any member of a class of organic compounds that is composed of multiple fused aromatic rings. Most are produced by the incomplete combustion of organic matter— by engine exhaust fumes, tobacco, incine ...
s; to
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
s, such as
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
or other
soot Soot ( ) is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. Soot is considered a hazardous substance with carcinogenic properties. Most broadly, the term includes all the particulate matter produced b ...
y material.


Motion in the universe

Stars and interstellar gas are bound by gravity to form galaxies, and groups of galaxies can be bound by gravity in
galaxy clusters A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. Clusters consist of galax ...
. With the exception of stars in the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
and the galaxies in the
Local Group The Local Group is the galaxy group that includes the Milky Way, where Earth is located. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a " dumbbell" shape; the Milky Way ...
, almost all galaxies are moving away from Earth due to the
expansion of the universe The expansion of the universe is the increase in proper length, distance between Gravitational binding energy, gravitationally unbound parts of the observable universe with time. It is an intrinsic and extrinsic properties (philosophy), intrins ...
.


Doppler effect and redshift

The motion of stellar objects can be determined by looking at their spectrum. Because of the
Doppler effect The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described ...
, objects moving towards someone are
blueshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
ed, and objects moving away are
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
ed. The wavelength of redshifted light is longer, appearing redder than the source. Conversely, the wavelength of blueshifted light is shorter, appearing bluer than the source light: :\frac=\frac where \lambda_0 is the emitted wavelength, v_0 is the velocity of the object, and \lambda is the observed wavelength. Note that v<0 corresponds to λ<λ0, a blueshifted wavelength. A redshifted absorption or emission line will appear more towards the red end of the spectrum than a stationary line. In 1913
Vesto Slipher Vesto Melvin Slipher (; November 11, 1875 – November 8, 1969) was an American astronomer who performed the first measurements of radial velocities for galaxies. He was the first to discover that distant galaxies are redshifted, thus providing ...
determined the
Andromeda Galaxy The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a Galaxy#Isophotal diameter, D25 isop ...
was blueshifted, meaning it was moving towards the Milky Way. He recorded the spectra of 20 other galaxies — all but four of which were redshifted — and was able to calculate their velocities relative to the Earth.
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects previously ...
would later use this information, as well as his own observations, to define
Hubble's law Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faste ...
: The further a galaxy is from the Earth, the faster it is moving away. Hubble's law can be generalised to: :v = H_0 d where v is the velocity (or Hubble Flow), H_0 is the
Hubble Constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faste ...
, and d is the distance from Earth. Redshift (z) can be expressed by the following equations: In these equations, frequency is denoted by f and wavelength by \lambda. The larger the value of z, the more redshifted the light and the farther away the object is from the Earth. As of January 2013, the largest galaxy redshift of z~12 was found using the
Hubble Ultra-Deep Field The Hubble Ultra-Deep Field (HUDF) is a List of deep fields, deep-field image of a small region of outer space, space in the constellation Fornax, containing an estimated 10,000 galaxies. The original data for the image was collected by the Hub ...
, corresponding to an age of over 13 billion years (the universe is approximately 13.82 billion years old). The Doppler effect and Hubble's law can be combined to form the equation z = \frac, where c is the speed of light.


Peculiar motion

Objects that are gravitationally bound will rotate around a common center of mass. For stellar bodies, this motion is known as peculiar velocity and can alter the Hubble Flow. Thus, an extra term for the peculiar motion needs to be added to Hubble's law: :v_\text = H_0 d + v_\mathrm This motion can cause confusion when looking at a solar or galactic spectrum, because the expected redshift based on the simple Hubble law will be obscured by the peculiar motion. For example, the shape and size of the
Virgo Cluster The Virgo Cluster is a cluster of galaxies whose center is 53.8 ± 0.3 Mly (16.5 ± 0.1 Mpc) away in the Virgo constellation. Comprising approximately 1,300 (and possibly up to 2,000) member galaxies, the cluster forms the heart of the larger ...
has been a matter of great scientific scrutiny due to the very large peculiar velocities of the galaxies in the cluster.


Binary stars

Just as planets can be gravitationally bound to stars, pairs of stars can orbit each other. Some
binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
s are visual binaries, meaning they can be observed orbiting each other through a telescope. Some binary stars, however, are too close together to be resolved. These two stars, when viewed through a spectrometer, will show a composite spectrum: the spectrum of each star will be added together. This composite spectrum becomes easier to detect when the stars are of similar luminosity and of different
spectral class In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ...
.
Spectroscopic binaries A binary star or binary star system is a Star system, system of two stars that are gravity, gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved ...
can be also detected due to their
radial velocity The radial velocity or line-of-sight velocity of a target with respect to an observer is the rate of change of the vector displacement between the two points. It is formulated as the vector projection of the target-observer relative velocity ...
; as they orbit around each other one star may be moving towards the Earth whilst the other moves away, causing a Doppler shift in the composite spectrum. The
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) a ...
of the system determines the magnitude of the observed shift: if the observer is looking perpendicular to the orbital plane there will be no observed radial velocity. For example, a person looking at a
carousel A carousel or carrousel (mainly North American English), merry-go-round (International English), or galloper (British English) is a type of amusement ride consisting of a rotating circular platform with seats for riders. The seats are tradit ...
from the side will see the animals moving toward and away from them, whereas if they look from directly above they will only be moving in the horizontal plane.


Planets, asteroids, and comets

Planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s,
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s, and
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s all reflect light from their parent stars and emit their own light. For cooler objects, including
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
planets and asteroids, most of the emission is at infrared wavelengths we cannot see, but that are routinely measured with
spectrometer A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
s. For objects surrounded by gas, such as comets and planets with atmospheres, further emission and absorption happens at specific wavelengths in the gas, imprinting the spectrum of the gas on that of the solid object. In the case of worlds with thick atmospheres or complete cloud or haze cover (such as the four
giant planet A giant planet, sometimes referred to as a jovian planet (''Jove'' being another name for the Roman god Jupiter (mythology), Jupiter), is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling ...
s,
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
, and
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
's satellite
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
), the spectrum is mostly or completely due to the atmosphere alone.


Planets

The reflected light of a planet contains absorption bands due to
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s in the rocks present for rocky bodies, or due to the elements and molecules present in the atmosphere. To date over 3,500
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first det ...
s have been discovered. These include so-called
Hot Jupiter Hot Jupiters (sometimes called hot Saturns) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter (i.e. Jupiter analogue, Jupiter analogues) but that have very short orbital periods (). The close proximity to t ...
s, as well as Earth-like planets. Using spectroscopy, compounds such as alkali metals, water vapor, carbon monoxide, carbon dioxide, and methane have all been discovered.


Asteroids

Asteroids can be classified into three major types according to their spectra. The original categories were created by Clark R. Chapman, David Morrison, and Ben Zellner in 1975, and further expanded by David J. Tholen in 1984. In what is now known as the Tholen classification, the C-types are made of carbonaceous material, S-types consist mainly of
silicates A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used for an ...
, and X-types are 'metallic'. There are other classifications for unusual asteroids. C- and S-type asteroids are the most common asteroids. In 2002 the Tholen classification was further "evolved" into the SMASS classification, expanding the number of categories from 14 to 26 to account for more precise spectroscopic analysis of the asteroids.


Comets

The spectra of comets consist of a reflected solar spectrum from the dusty clouds surrounding the comet, as well as emission lines from gaseous atoms and molecules excited to
fluorescence Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
by sunlight and/or chemical reactions. For example, the chemical composition of
Comet ISON Comet ISON, formally known as C/2012 S1, was a sungrazing comet from the Oort cloud which was discovered on 21 September 2012 by Vitaly Nevsky (Віталь Неўскі, Vitebsk, Belarus) and Artyom Novichonok (Артём Новичонок, Ko ...
was determined by spectroscopy due to the prominent emission lines of cyanogen (CN), as well as two- and three-carbon atoms (C2 and C3). Nearby comets can even be seen in X-ray as solar wind ions flying to the
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to Nociception, respond normally to Pain, painful stimuli, light, or sound, lacks a normal Circadian rhythm, sleep-wake cycle and does not initiate ...
are neutralized. The cometary X-ray spectra therefore reflect the state of the solar wind rather than that of the comet.


See also


References

{{Authority control Spectroscopy Observational astronomy