A stellar core is the extremely hot, dense region at the center of a star. For an ordinary
main sequence
In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or d ...
star, the core region is the volume where the temperature and pressure conditions allow for energy production through
thermonuclear fusion
Nuclear fusion is a reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutron by-products. The difference in mass between the reactants and products is manifested as either the release or absorption of ener ...
of
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
into
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
. This energy in turn counterbalances the mass of the star pressing inward; a process that self-maintains the conditions in
thermal
A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
and
hydrostatic equilibrium
In fluid mechanics, hydrostatic equilibrium, also called hydrostatic balance and hydrostasy, is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. I ...
. The minimum temperature required for stellar
hydrogen fusion
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
exceeds 10
7 K (), while the density at the core of the
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
is over . The core is surrounded by the stellar envelope, which transports energy from the core to the
stellar atmosphere
The stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone.
Overview
The stellar atmosphere is divided into several regions of distinct character:
* The photosphere, whi ...
where it is radiated away into space.
[
]
Main sequence
Main sequence stars are distinguished by the primary energy-generating mechanism in their central region, which joins four hydrogen nuclei to form a single helium atom through thermonuclear fusion
Nuclear fusion is a reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutron by-products. The difference in mass between the reactants and products is manifested as either the release or absorption of ener ...
. The Sun is an example of this class of stars. Once stars with the mass of the Sun
The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies a ...
form, the core region reaches thermal equilibrium after about 100 million (108)[ years and becomes radiative.][ This means the generated energy is transported out of the core via ]radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:
* ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
and conduction
Conductor or conduction may refer to:
Biology and medicine
* Bone conduction, the conduction of sound to the inner ear
* Conduction aphasia, a language disorder
Mathematics
* Conductor (ring theory)
* Conductor of an abelian variety
* Condu ...
rather than through mass transport in the form of convection
Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
. Above this spherical radiation zone
A radiative zone is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiative zone in the form of ...
lies a small convection zone
A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation ...
just below the outer atmosphere.
At lower stellar mass
Stellar mass is a phrase that is used by astronomers to describe the mass of a star. It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass (). Hence, the bright star Sirius has around . A star's mass will vary over ...
, the outer convection shell takes up an increasing proportion of the envelope, and for stars with a mass of around (35% of the mass of the Sun) or less (including failed stars) the entire star is convective, including the core region.[ These very low-mass stars (VLMS) occupy the late range of the ]M-type main-sequence star
A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are ...
s, or red dwarf
A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are ...
. The VLMS form the primary stellar component of the Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
at over 70% of the total population. The low-mass end of the VLMS range reaches about , below which ordinary (non-deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
) hydrogen fusion
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
does not take place and the object is designated a brown dwarf
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
. The temperature of the core region for a VLMS decreases with decreasing mass, while the density increases. For a star with , the core temperature is about while the density is around . Even at the low end of the temperature range, the hydrogen and helium in the core region is fully ionized.[
]
Below about , energy production in the stellar core is predominantly through the proton–proton chain reaction, a process requiring only hydrogen. For stars above this mass, the energy generation comes increasingly from the CNO cycle
In astrophysics, the carbon–nitrogen–oxygen (CNO) cycle, sometimes called Bethe–Weizsäcker cycle, after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker, is one of the two known sets of fusion reactions by which stars convert h ...
, a hydrogen fusion process that uses intermediary atoms of carbon, nitrogen, and oxygen. In the Sun, only 1.5% of the net energy comes from the CNO cycle. For stars at where the core temperature reaches 18 MK, half the energy production comes from the CNO cycle and half from the pp chain.[ The CNO process is more temperature-sensitive than the pp chain, with most of the energy production occurring near the very center of the star. This results in a stronger thermal gradient, which creates convective instability. Hence, the core region is convective for stars above about .][
For all masses of stars, as the core hydrogen is consumed, the temperature increases so as to maintain pressure equilibrium. This results in an increasing rate of energy production, which in turn causes the luminosity of the star to increase. The lifetime of the core hydrogen–fusing phase decreases with increasing stellar mass. For a star with the mass of the Sun, this period is around ten billion years. At the lifetime is 65 million years while at the core hydrogen–fusing period is only six million years.][ The longest-lived stars are fully convective red dwarfs, which can stay on the main sequence for hundreds of billions of years or more.][
]
Subgiant stars
Once a star has converted all the hydrogen in its core into helium, the core is no longer able to support itself and begins to collapse. It heats up and becomes hot enough for hydrogen in a shell outside the core to start fusion. The core continues to collapse and the outer layers of the star expand. At this stage, the star is a subgiant
A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution ...
. Very-low-mass stars never become subgiants because they are fully convective.[
Stars with masses between about and have small non-convective cores on the main sequence and develop thick hydrogen shells on the subgiant branch. They spend several billion years on the subgiant branch, with the mass of the helium core slowly increasing from the fusion of the hydrogen shell. Eventually, the core becomes degenerate, where the dominant source of core pressure is ]electron degeneracy pressure
In astrophysics and condensed matter physics, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quan ...
, and the star expands onto the red giant branch.[
Stars with higher masses have at least partially convective cores while on the main sequence, and they develop a relatively large helium core before exhausting hydrogen throughout the convective region, and possibly in a larger region due to convective overshoot. When core fusion ceases, the core starts to collapse and it is so large that the gravitational energy actually increases the temperature and luminosity of the star for several million years before it becomes hot enough to ignite a hydrogen shell. Once hydrogen starts fusing in the shell, the star cools and it is considered to be a subgiant. When the core of a star is no longer undergoing fusion, but its temperature is maintained by fusion of a surrounding shell, there is a maximum mass called the ]Schönberg–Chandrasekhar limit In stellar astrophysics, the Schönberg–Chandrasekhar limit is the maximum mass of a non-fusing, isothermal core that can support an enclosing envelope. It is expressed as the ratio of the core mass to the total mass of the core and envelope. Est ...
. When the mass exceeds that limit, the core collapses, and the outer layers of the star expand rapidly to become a red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
. In stars up to approximately , this occurs only a few million years after the star becomes a subgiant. Stars more massive than have cores above the Schönberg–Chandrasekhar limit before they leave the main sequence.[
]
Giant stars
Once the supply of hydrogen at the core of a low-mass star with at least [ is depleted, it will leave the main sequence and evolve along the ]red giant branch
The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass st ...
of the Hertzsprung–Russell diagram
The Hertzsprung–Russell diagram (abbreviated as H–R diagram, HR diagram or HRD) is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities and their stellar classifications or effective temp ...
. Those evolving stars with up to about will contract their core until hydrogen begins fusing through the pp chain along with a shell around the inert helium core, passing along the subgiant branch
A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of ...
. This process will steadily increase the mass of the helium core, causing the hydrogen-fusing shell to increase in temperature until it can generate energy through the CNO cycle. Due to the temperature sensitivity of the CNO process, this hydrogen fusing shell will be thinner than before. Non-core convecting stars above that have consumed their core hydrogen through the CNO process, contract their cores, and directly evolve into the giant stage. The increasing mass and density of the helium core will cause the star to increase in size and luminosity as it evolves up the red giant branch.[
For stars in the mass range , the helium core becomes degenerate before it is hot enough for helium to start fusion. When the density of the degenerate helium at the core is sufficiently high − at around with a temperature of about − it undergoes a nuclear explosion known as a "]helium flash
A helium flash is a very brief thermal runaway nuclear fusion of large quantities of helium into carbon through the triple-alpha process in the core of low-mass stars (between 0.5-0.44 solar masses () and 2.0 ) during their red giant phase. The Su ...
". This event is not observed outside the star, as the unleashed energy is entirely used up to lift the core from electron degeneracy to normal gas state. The helium fusing core expands, with the density decreasing to about , while the stellar envelope undergoes a contraction. The star is now on the horizontal branch
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha proc ...
, with the photosphere
The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will esc ...
showing a rapid decrease in luminosity combined with an increase in the effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
.[
In the more massive main-sequence stars with core convection, the helium produced by fusion becomes mixed throughout the convective zone. Once the core hydrogen is consumed, it is thus effectively exhausted across the entire convection region. At this point, the helium core starts to contract and hydrogen fusion begins along with a shell around the perimeter, which then steadily adds more helium to the inert core.][ At stellar masses above , the core does not become degenerate before initiating helium fusion.][ Hence, as the star ages, the core continues to contract and heat up until a ]triple alpha process
The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon.
In stars
Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
can be maintained at the center, fusing helium into carbon. However, most of the energy generated at this stage continues to come from the hydrogen fusing shell.[
For stars above , ]helium fusion
The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon.
In stars
Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
at the core begins immediately as the main sequence comes to an end. Two hydrogen fusing shells are formed around the helium core: a thin CNO cycle inner shell and an outer pp chain shell.[
]
See also
* Solar core
The core of the Sun is considered to extend from the center to about 0.2 of the solar radius (). It is the hottest part of the Sun and of the Solar System. It has a density of at the center, and a temperature of 15 million kelvins (15 million de ...
* Stellar evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
References
Bibliography
*
*
*
*
*
*
*
*
*
*
*
{{DEFAULTSORT:Stellar core
Stellar astronomy