In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the special linear group
of degree
over a
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
is the set of
matrices
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the ...
with
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
, with the group operations of ordinary
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
and
matrix inversion. This is the
normal subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
of the
general linear group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
given by the
kernel of the
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
:
where
is the
multiplicative group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
*the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of
(that is,
excluding
when
is a field).
These elements are "special" in that they form an
algebraic subvariety of the general linear group – they satisfy a polynomial equation (since the determinant is polynomial in the entries).
When
is the
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
of order
, the notation
is sometimes used.
Geometric interpretation
The special linear group
can be characterized as the group of ''
volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
and
orientation
Orientation may refer to:
Positioning in physical space
* Map orientation, the relationship between directions on a map and compass directions
* Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
preserving'' linear transformations of
. This corresponds to the interpretation of the determinant as measuring change in volume and orientation.
Lie subgroup
When
is
or
,
is a
Lie subgroup
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
of
of dimension
. The
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
of
consists of all
matrices over
with vanishing
trace. The
Lie bracket
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identit ...
is given by the
commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
.
Topology
Any invertible matrix can be uniquely represented according to the
polar decomposition
In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is a unitary matrix, and P is a positive semi-definite Hermitian matrix (U is an orthogonal matrix, and P is a posit ...
as the product of a
unitary matrix
In linear algebra, an invertible complex square matrix is unitary if its matrix inverse equals its conjugate transpose , that is, if
U^* U = UU^* = I,
where is the identity matrix.
In physics, especially in quantum mechanics, the conjugate ...
and a
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
with positive
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s. The
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the unitary matrix is on the
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, while that of the Hermitian matrix is real and positive. Since in the case of a matrix from the special linear group the product of these two determinants must be 1, then each of them must be 1. Therefore, a special linear matrix can be written as the product of a
special unitary matrix (or
special orthogonal matrix in the real case) and a
positive definite Hermitian matrix (or
symmetric matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with ...
in the real case) having determinant 1.
It follows that the topology of the group
is the
product of the topology of
and the topology of the group of Hermitian matrices of unit determinant with positive eigenvalues. A Hermitian matrix of unit determinant and having positive eigenvalues can be uniquely expressed as the
exponential
Exponential may refer to any of several mathematical topics related to exponentiation, including:
* Exponential function, also:
**Matrix exponential, the matrix analogue to the above
*Exponential decay, decrease at a rate proportional to value
* Ex ...
of a
traceless Hermitian matrix, and therefore the topology of this is that of
-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. Since
is
simply connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
, then
is also simply connected, for all
.
The topology of
is the product of the topology of
SO(''n'') and the topology of the group of symmetric matrices with positive eigenvalues and unit determinant. Since the latter matrices can be uniquely expressed as the exponential of symmetric traceless matrices, then this latter topology is that of -dimensional Euclidean space. Thus, the group
has the same
fundamental group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
as
; that is,
for
and
for
.
[ Sections 13.2 and 13.3] In particular this means that
, unlike
, is not simply connected, for
.
Relations to other subgroups of GL(''n'', ''A'')
Two related subgroups, which in some cases coincide with
, and in other cases are accidentally conflated with
, are the
commutator subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
The commutator subgroup is important because it is the smallest normal ...
of
, and the group generated by
transvections. These are both subgroups of
(transvections have determinant 1, and det is a map to an abelian group, so
), but in general do not coincide with it.
The group generated by transvections is denoted
(for
elementary matrices) or
. By the second
Steinberg relation, for
, transvections are commutators, so for
,