HOME





Direct Limit Of Groups
In mathematics, a direct limit of groups is the direct limit of a of groups. These are central objects of study in algebraic topology, especially stable homotopy theory and homological algebra. They are sometimes called stable groups, though this term normally means something quite different in model theory. Certain examples of stable groups are easier to study than "unstable" groups, the groups occurring in the limit. This is surprising, given that they are generally infinite-dimensional, constructed as limits of groups with finite-dimensional representations. Examples Each family of classical groups forms a direct system, via inclusion of matrices in the upper left corner, such as \operatorname(n,A) \to \operatorname(n+1,A). The stable groups are denoted \operatorname(A) or \operatorname(\infty,A). Bott periodicity computes the homotopy of the stable unitary group and stable orthogonal group. The Whitehead group of a ring (the first K-group) can be defined in terms of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitary Group
Unitary may refer to: Mathematics * Unitary divisor * Unitary element * Unitary group * Unitary matrix * Unitary morphism * Unitary operator * Unitary transformation * Unitary representation * Unitarity (physics) * ''E''-unitary inverse semigroup Politics * Unitary authority * Unitary state See also * Unital (other) * Unitarianism Unitarianism () is a Nontrinitarianism, nontrinitarian sect of Christianity. Unitarian Christians affirm the wikt:unitary, unitary God in Christianity, nature of God as the singular and unique Creator deity, creator of the universe, believe that ...
* * {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Applications to other fields of mathematics Besides algebraic topology, the theory has also been used in other areas of mathematics such as: * Algebraic geometry (e.g., A1 homotopy theory, A1 homotopy theory) * Category theory (specifically the study of higher category theory, higher categories) Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid Pathological (mathematics), pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being Category of compactly generated weak Hausdorff spaces, compactly generated weak Hausdorff or a CW complex. In the same vein as above, a "Map (mathematics), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Suspension Functor
In topology, a branch of mathematics, the suspension of a topological space ''X'' is intuitively obtained by stretching ''X'' into a cylinder and then collapsing both end faces to points. One views ''X'' as "suspended" between these end points. The suspension of ''X'' is denoted by ''SX'' or susp(''X''). There is a variant of the suspension for a pointed space, which is called the reduced suspension and denoted by Σ''X''. The "usual" suspension ''SX'' is sometimes called the unreduced suspension, unbased suspension, or free suspension of ''X'', to distinguish it from Σ''X.'' Free suspension The (free) suspension SX of a topological space X can be defined in several ways. 1. SX is the quotient space (X \times ,1/(X\times \)\big/ ( X\times \). In other words, it can be constructed as follows: * Construct the cylinder X \times ,1/math>. * Consider the entire set X\times \ as a single point ("glue" all its points together). * Consider the entire set X\times \ as a single p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Homotopy Groups Of Spheres
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute. The -dimensional unit sphere — called the -sphere for brevity, and denoted as — generalizes the familiar circle () and the ordinary sphere (). The -sphere may be defined geometrically as the set of points in a Euclidean space of dimension located at a unit distance from the origin. The -th ''homotopy group'' summarizes the different ways in which the -dimensional sphere can be mapped continuously into the sphere . This summary does not distinguish between two mappings if one can be continuously deformed to the oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic K-theory
Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the ''K''-groups of the integers. ''K''-theory was discovered in the late 1950s by Alexander Grothendieck in his study of intersection theory on algebraic varieties. In the modern language, Grothendieck defined only ''K''0, the zeroth ''K''-group, but even this single group has plenty of applications, such as the Grothendieck–Riemann–Roch theorem. Intersection theory is still a motivating force in the development of (higher) algebraic ''K''-theory through its links with motivic cohomology and specifically Chow groups. The subject also includes classi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitehead Torsion
In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence f\colon X \to Y of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion \tau(f) which is an element in the Whitehead group \operatorname(\pi_1(Y)). These concepts are named after the mathematician J. H. C. Whitehead. The Whitehead torsion is important in applying surgery theory to non-simply connected manifolds of dimension > 4: for simply-connected manifolds, the Whitehead group vanishes, and thus homotopy equivalences and simple homotopy equivalences are the same. The applications are to differentiable manifolds, PL manifolds and topological manifolds. The proofs were first obtained in the early 1960s by Stephen Smale, for differentiable manifolds. The development of handlebody theory allowed much the same proofs in the differentiable and PL categories. The proofs are much harder in the topological category, requiring the theory of Robion Kirby and L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Group
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by Function composition, composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrix, orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose invertible matrix, inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact group, compact. The orthogonal group in dimension has two connected component (topology), connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted . It consists of all orthogonal matrices of determinant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bott Periodicity
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by , which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory. There are corresponding period-8 phenomena for the matching theories, ( real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Limit
In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms (group homomorphism, ring homomorphism, or in general morphisms in the category) between those smaller objects. The direct limit of the objects A_i, where i ranges over some directed set I, is denoted by \varinjlim A_i . This notation suppresses the system of homomorphisms; however, the limit depends on the system of homomorphisms. Direct limits are a special case of the concept of colimit in category theory. Direct limits are dual to inverse limits, which are a special case of limits in category theory. Formal definition We will first give the definition for algebraic structures like groups and modules, and then the general definition, which can be used ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]