HOME

TheInfoList



OR:

Soot ( ) is a mass of impure
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes ...
particles resulting from the incomplete combustion of
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
s. It is more properly restricted to the product of the gas-phase combustion process but is commonly extended to include the residual pyrolysed fuel particles such as
coal Coal is a combustible black or brownish-black sedimentary rock, formed as stratum, rock strata called coal seams. Coal is mostly carbon with variable amounts of other Chemical element, elements, chiefly hydrogen, sulfur, oxygen, and nitrogen ...
, cenospheres, charred wood, and petroleum coke that may become airborne during pyrolysis and that are more properly identified as cokes or char. Soot causes various types of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
and lung disease.


Sources

Soot as an airborne contaminant in the environment has many different sources, all of which are results of some form of pyrolysis. They include soot from
coal Coal is a combustible black or brownish-black sedimentary rock, formed as stratum, rock strata called coal seams. Coal is mostly carbon with variable amounts of other Chemical element, elements, chiefly hydrogen, sulfur, oxygen, and nitrogen ...
burning, internal-combustion engines, power-plant boilers, hog-fuel boilers, ship boilers, central steam-heat boilers, waste incineration, local field burning, house fires, forest fires, fireplaces, and furnaces. These exterior sources also contribute to the indoor environment sources such as smoking of plant matter, cooking, oil lamps, candles, quartz/halogen bulbs with settled dust, fireplaces, exhaust emissions from vehicles, and defective furnaces. Soot in very low concentrations is capable of darkening surfaces or making particle agglomerates, such as those from ventilation systems, appear
black Black is a color which results from the absence or complete absorption of visible light. It is an achromatic color, without hue, like white and grey. It is often used symbolically or figuratively to represent darkness. Black and white ha ...
. Soot is the primary cause of "ghosting", the discoloration of walls and ceilings or walls and flooring where they meet. It is generally responsible for the discoloration of the walls above baseboard electric heating units. The formation of soot depends strongly on the fuel composition. The rank ordering of sooting tendency of fuel components is: naphthalenes → benzenes → aliphatics. However, the order of sooting tendencies of the aliphatics ( alkanes, alkenes, and alkynes) varies dramatically depending on the flame type. The difference between the sooting tendencies of aliphatics and aromatics is thought to result mainly from the different routes of formation. Aliphatics appear to first form acetylene and polyacetylenes, which is a slow process; aromatics can form soot both by this route and also by a more direct pathway involving ring condensation or polymerization reactions building on the existing aromatic structure.


Description

The
Intergovernmental Panel on Climate Change The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental body of the United Nations. Its job is to advance scientific knowledge about climate change caused by human activities. The World Meteorological Organization (WMO) a ...
(IPCC) adopted the description of soot particles given in the glossary of Charlson and Heintzenberg (1995), "Particles formed during the quenching of gases at the outer edge of flames of organic vapours, consisting predominantly of carbon, with lesser amounts of oxygen and hydrogen present as carboxyl and phenolic groups and exhibiting an imperfect graphitic structure". Formation of soot is a complex process, an evolution of matter in which a number of molecules undergo many chemical and physical reactions within a few milliseconds. Soot is a powder-like form of amorphous carbon. Gas-phase soot contains polycyclic aromatic hydrocarbons (PAHs). The PAHs in soot are known mutagens and are classified as a "known human carcinogen" by the International Agency for Research on Cancer (IARC). Soot forms during incomplete combustion from precursor molecules such as acetylene. It consists of agglomerated nanoparticles with diameters between 6 and 30  nm. The soot particles can be mixed with metal oxides and with minerals and can be coated with sulfuric acid.


Soot formation mechanism

Many details of soot formation chemistry remain unanswered and controversial, but there have been a few agreements: * Soot begins with some precursors or building blocks. *
Nucleation In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that deter ...
of heavy molecules occurs to form particles. * Surface growth of a particle proceeds by adsorption of gas phase molecules. * Coagulation happens via reactive particle–particle collisions. *
Oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
of the molecules and soot particles reduces soot formation.


Hazards

Soot, particularly diesel exhaust pollution, accounts for over one-quarter of the total hazardous pollution in the air. Among these diesel emission components,
particulate matter Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The ter ...
has been a serious concern for human health due to its direct and broad impact on the respiratory organs. In earlier times, health professionals associated PM10 (diameter < 10 
μm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
) with chronic lung disease,
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. Lung carcinomas derive from transformed, malign ...
,
influenza Influenza, commonly known as "the flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms ...
, asthma, and increased mortality rate. However, recent scientific studies suggest that these correlations be more closely linked with fine particles (PM2.5) and ultra-fine particles (PM0.1). Long-term
exposure Exposure or Exposures may refer to: People * The Exposures, a pseudonym for German electronic musician Jan Jeline Arts, entertainment, and media Films * ''Exposure'' (film), a 1932 American film * ''Exposure'', another name for the 1991 movie ...
to
urban air pollution Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different types ...
containing soot increases the risk of coronary artery disease. Diesel exhaust (DE) gas is a major contributor to combustion-derived particulate-matter air pollution. In human experimental studies using an exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation. This serves as a plausible mechanistic link between the previously described association between particulate matter air pollution and increased cardiovascular morbidity and mortality. Soot also tends to form in chimneys in domestic houses possessing one or more fireplaces. If a large deposit collects in one, it can ignite and create a chimney fire. Regular cleaning by a chimney sweep should eliminate the problem.


Soot modeling

Soot mechanism is difficult to model mathematically because of the large number of primary components of
diesel fuel Diesel fuel , also called diesel oil, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place without a spark as a result of compression of the inlet air and ...
, complex combustion mechanisms, and the
heterogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
interactions during soot formation. Soot models are broadly categorized into three subgroups: empirical (equations that are adjusted to match experimental soot profiles), semi-empirical (combined mathematical equations and some empirical models which used for particle number density and soot volume and mass fraction), and detailed theoretical mechanisms (covers detailed chemical kinetics and physical models in all phases). First, empirical models use correlations of experimental data to predict trends in soot production. Empirical models are easy to implement and provide excellent correlations for a given set of operating conditions. However, empirical models cannot be used to investigate the underlying mechanisms of soot production. Therefore, these models are not flexible enough to handle changes in operating conditions. They are only useful for testing previously established designed experiments under specific conditions. Second, semi-empirical models solve rate equations that are calibrated using experimental data. Semi-empirical models reduce computational costs primarily by simplifying the chemistry in soot formation and oxidation. Semi-empirical models reduce the size of chemical mechanisms and use simpler molecules, such as acetylene as precursors. Detailed theoretical models use extensive chemical mechanisms containing hundreds of chemical reactions in order to predict concentrations of soot. Detailed theoretical soot models contain all the components present in the soot formation with a high level of detailed chemical and physical processes. Finally, comprehensive models (detailed models) are usually expensive and slow to compute, as they are much more complex than empirical or semi-empirical models. Thanks to recent technological progress in computation, it has become more feasible to use detailed theoretical models and obtain more realistic results; however, further advancement of comprehensive theoretical models is limited by the accuracy of modeling of formation mechanisms. Additionally, phenomenological models have found wide use recently. Phenomenological soot models, which may be categorized as semi-empirical models, correlate empirically observed phenomena in a way that is consistent with the fundamental theory, but is not directly derived from the theory. These models use sub-models developed to describe the different processes (or phenomena) observed during the combustion process. Examples of sub-models of phenomenological empirical models include spray model, lift-off model, heat release model, ignition delay model, etc. These sub-models can be empirically developed from observation or by using basic physical and chemical relations. Phenomenological models are accurate for their relative simplicity. They are useful, especially when the accuracy of the model parameters is low. Unlike empirical models, phenomenological models are flexible enough to produce reasonable results when multiple operating conditions change.


See also

*
Activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area avail ...
* Atmospheric particulate matter * Bistre * Black carbon * Carbon black * Colorant * Creosote *
Diesel particulate matter Diesel exhaust is the gaseous exhaust produced by a diesel type of internal combustion engine, plus any contained particulates. Its composition may vary with the fuel type or rate of consumption, or speed of engine operation (e.g., idling or at ...
* Fullerene * Indian ink * Rolling coal * Soot blower


References


External links

* {{Pollution Allotropes of carbon IARC Group 1 carcinogens Pollution Air pollution