Basic concept
Solar energy intercepted
The amount of solar energy available for collection from the direct beam is the amount of light intercepted by the panel. This is given by the area of the panel multiplied by the cosine of the angle of incidence of the direct beam (see illustration above). Or put another way, the energy intercepted is equivalent to the area of the shadow cast by the panel onto a surface perpendicular to the direct beam. This cosine relationship is very closely related to the observation formalized in 1760 by Lambert's cosine law. This describes that the observed brightness of an object is proportional to the cosine of the angle of incidence of the light illuminating it.Reflective losses
Daily east-west motion of the Sun
The Sun travels through 360 degrees east to west per day, but from the perspective of any fixed location the visible portion is 180 degrees during an average 1/2 day period (more in summer; slightly less in spring and fall; significantly less in winter). Local horizon effects reduce this somewhat, making the effective motion about 150 degrees. A solar panel in a fixed orientation between the dawn and sunset extremes will see a motion of 75 degrees to either side, and thus, according to the table above, will lose over 75% of the energy in the morning and evening. Rotating the panels to the east and west can help recapture those losses. A tracker that only attempts to compensate for the east-west movement of the Sun is known as a single-axis tracker.Seasonal north-south motion of the Sun
Due to the tilt of the Earth's axis, the Sun also moves through 46 degrees north and south during a year. The same set of panels set at the midpoint between the two local extremes will thus see the Sun move 23 degrees on either side. Thus according to the above table, an optimally aligned single-axis tracker (see polar aligned tracker below) will only lose 8.3% at the summer and winter seasonal extremes, or around 5% averaged over a year. Conversely a vertically or horizontally aligned single-axis tracker will lose considerably more as a result of these seasonal variations in the Sun's path. For example, a vertical tracker at a site at 60° latitude will lose up to 40% of the available energy in summer, while a horizontal tracker located at 25° latitude will lose up to 33% in winter. A tracker that accounts for both the daily and seasonal motions is known as a dual-axis tracker. Generally speaking, the losses due to seasonal angle changes are complicated by changes in the length of the day, increasing collection in the summer in northern or southern latitudes. This biases collection toward the summer, so if the panels are tilted closer to the average summer angles, the total yearly losses are reduced compared to a system tilted at the spring/fallOther factors
Clouds
The above models assume uniform likelihood of cloud cover at different times of day or year. In different climate zones cloud cover can vary with seasons, affecting the averaged performance figures described above. Alternatively, for example in an area where cloud cover on average builds up during the day, there can be particular benefits in collecting morning sun.Atmosphere
The distance that sunlight has to travel through the atmosphere increases as the sun approaches the horizon, as the sunlight has to travel diagonally through the atmosphere. As the path length through the atmosphere increases, the solar intensity reaching the collector decreases. This increasing path length is referred to as the air mass (AM) or air mass coefficient, where ''AM0'' is at the top of the atmosphere, ''AM1'' refers to the direct vertical path down to sea-level with Sun overhead, and ''AM'' greater than 1 refers to diagonal paths as the Sun approaches the horizon. Even though the sun may not feel particularly hot in the early mornings or during the winter months, the diagonal path through the atmosphere has a less than expected impact on the solar intensity. Even when the sun is only 15° above the horizon the solar intensity can be around 60% of its maximum value, around 50% at 10° and 25% at only 5° above the horizon.See table at Air mass coefficient Therefore, if trackers can follow the Sun from horizon to horizon, then their solar panels can collect a significant amount of energy.Solar cell efficiency
Of course the underlying power conversion efficiency of a photovoltaic cell has a major influence on the end result, regardless of whether tracking is employed or not. Of particular relevance to the benefits of tracking are the following:Temperature
Photovoltaic solar cell efficiency decreases with increasing temperature, at the rate of about 0.4%/°C. For example, 20% higher efficiency at 10 °C in early morning or winter as compared with 60 °C in the heat of the day or summer. Therefore, trackers can deliver additional benefit by collecting early morning and winter energy when the cells are operating at their highest efficiency.Summary
Trackers for concentrating collectors must employ high-accuracy tracking so as to keep the collector at the focus point. Trackers for non-concentrating flat-panel do not need high accuracy tracking: * low power loss: under 10% loss even at 25° misalignment * reflectance consistent even to around 50° misalignment * diffuse sunlight contributes 10% independent of orientation, and a larger proportion on cloudy days The benefits of tracking non-concentrating flat-panel collectors flow from the following: * power loss degrades rapidly beyond about 30° misalignment * significant power is available even when the Sun is very close to the horizon, e.g. around 60% of full power at 15° above the horizon, around 50% at 10°, and even 25% at only 5° above the horizon – of particular relevance at high latitudes and/or during the winter months * photovoltaic panels are around 20% more efficient in the cool of the early mornings as compared with during the heat of the day; similarly, they are more efficient in winter than summer – and to effectively capture early morning and winter sun requires tracking.Types of solar collector
Solar collectors may be: * non-concentrating flat-panels, usually photovoltaic or hot-water, * concentrating systems, of a variety of types. Solar collector mounting systems may be fixed (manually aligned) or tracking. Different types of solar collector and their location (Non-tracking fixed mount
Residential and small-capacity commercial or industrial rooftop solar panels and solar water heater panels are usually fixed, often flush-mounted on an appropriately facing pitched roof. Advantages of fixed mounts over trackers include the following: * Mechanical Advantages: Simple to manufacture, lower installation and maintenance costs. * Wind-loading: it is easier and cheaper to provision a sturdy mount; all mounts other than fixed flush-mounted panels must be carefully designed having regard to wind loading due to greater exposure. * Indirect light: approximately 10% of the incident solar radiation is diffuse light, available at any angle of misalignment with the Sun. * Tolerance to misalignment: effective collection area for a flat-panel is relatively insensitive to quite high levels of misalignment with the Sun – see table and diagram atTrackers
Even though a fixed flat-panel can be set to collect a high proportion of available noon-time energy, significant power is also available in the early mornings and late afternoons when the misalignment with a fixed panel becomes excessive to collect a reasonable proportion of the available energy. For example, even when the Sun is only 10° above the horizon the available energy can be around half the noon-time energy levels (or even greater depending on latitude, season, and atmospheric conditions). Thus the primary benefit of a tracking system is to collect solar energy for the longest period of the day, and with the most accurate alignment as the Sun's position shifts with the seasons. In addition, the greater the level of concentration employed, the more important accurate tracking becomes, because the proportion of energy derived from direct radiation is higher, and the region where that concentrated energy is focused becomes smaller.Fixed collector / moving mirror
Many collectors cannot be moved, for example high-temperature collectors where the energy is recovered as hot liquid or gas (e.g. steam). Other examples include direct heating and lighting of buildings and fixed in-built solar cookers, such as Scheffler reflectors. In such cases it is necessary to employ a moving mirror so that, regardless of where the Sun is positioned in the sky, the Sun's rays are redirected onto the collector. Due to the complicated motion of the Sun across the sky, and the level of precision required to correctly aim the Sun's rays onto the target, a heliostat mirror generally employs a dual axis tracking system, with at least one axis mechanized. In different applications, mirrors may be flat or concave.Moving collector
Trackers can be grouped into classes by the number and orientation of the tracker's axes. Compared to a fixed mount, a single axis tracker increases annual output by approximately 30%, and a dual axis tracker an additional 10-20%. Photovoltaic trackers can be classified into two types: standard photovoltaic (PV) trackers and concentrated photovoltaic (CPV) trackers. Each of these tracker types can be further categorized by the number and orientation of their axes, their actuation architecture and drive type, their intended applications, their vertical supports and foundation.=Floating mount
= Floating islands of solar panels are being installed on reservoirs and lakes in the Netherlands, China, the UK and Japan. The sun-tracking system controlling the direction of the panels operates automatically according to the time of year, changing position by means of ropes attached to=Floating ground mount
= Solar trackers can be built using a “floating” foundation, which sits on the ground without the need for invasive concrete foundations. Instead of placing the tracker on concrete foundations, the tracker is placed on a gravel pan that can be filled with a variety of materials, such as sand or gravel, to secure the tracker to the ground. These “floating” trackers can sustain the same wind load as a traditional fixed mounted tracker. The use of floating trackers increases the number of potential sites for commercial solar projects since they can be placed on top of capped landfills or in areas where excavated foundations are not feasible.= Motion Free Optical Tracking
= Solar trackers can be built without the need for mechanical tracking equipment. These are called motion free optical tracking, there has been some series of advancements in this technology over the past few decadesNon-concentrating photovoltaic (PV) trackers
Photovoltaic panels accept both direct and diffuse light from the sky. The panels on standard photovoltaic trackers gather both the available direct and diffuse light. The tracking functionality in standard photovoltaic trackers is used to minimize the angle of incidence between incoming light and the photovoltaic panel. This increases the amount of energy gathered from the direct component of the incoming sunlight. The physics behind standard photovoltaic (PV) trackers works with all standard photovoltaic module technologies. These include all types of crystalline silicon panels (eitherConcentrator photovoltaic (CPV) trackers
The optics in CPV modules accept the direct component of the incoming light and therefore must be oriented appropriately to maximize the energy collected. In low concentration applications a portion of the diffuse light from the sky can also be captured. The tracking functionality in CPV modules is used to orient the optics such that the incoming light is focused to a photovoltaic collector. CPV modules that concentrate in one dimension must be tracked normal to the Sun in one axis. CPV modules that concentrate in two dimensions must be tracked normal to the Sun in two axes. ;Accuracy requirements The physics behind CPV optics requires that tracking accuracy increase as the systems concentration ratio increases. However, for a given concentration, nonimaging optics provide the widest possible acceptance angles, which may be used to reduce tracking accuracy. In typical high concentration systems tracking accuracy must be in the ± 0.1° range to deliver approximately 90% of the rated power output. In low concentration systems, tracking accuracy must be in the ± 2.0° range to deliver 90% of the rated power output. As a result, high accuracy tracking systems are typical. ;Technologies supported Concentrated photovoltaic trackers are used with refractive and reflective based concentrator systems. There are a range of emerging photovoltaic cell technologies used in these systems. These range from conventional, crystalline silicon-based photovoltaic receivers to germanium-based triple junction receivers.Single axis trackers
Single axis trackers have one degree of freedom that acts as an axis of rotation. The axis of rotation of single axis trackers is typically aligned along a true North meridian. It is possible to align them in any cardinal direction with advanced tracking algorithms. There are several common implementations of single axis trackers. These include horizontal single axis trackers (HSAT), horizontal single axis tracker with tilted modules (HTSAT), vertical single axis trackers (VSAT), tilted single axis trackers (TSAT) and polar aligned single axis trackers (PSAT). The orientation of the module with respect to the tracker axis is important when modeling performance. to learn more how they work https://solarearthinc.com/single-axis-solar-tracker/Horizontal
;Horizontal single axis tracker (HSAT) The axis of rotation for horizontal single axis tracker is horizontal with respect to the ground. The posts at either end of the axis of rotation of a horizontal single axis tracker can be shared between trackers to lower the installation cost. This type of solar tracker is most appropriate for low latitude regions. Field layouts with horizontal single axis trackers are very flexible. The simple geometry means that keeping all of the axes of rotation parallel to one another is all that is required for appropriately positioning the trackers with respect to one another. Appropriate spacing can maximize the ratio of energy production to cost, this being dependent upon local terrain and shading conditions and the time-of-day value of the energy produced. Backtracking is one means of computing the disposition of panels. Horizontal trackers typically have the face of the module oriented parallel to the axis of rotation. As a module tracks, it sweeps a cylinder that is rotationally symmetric around the axis of rotation. In single axis horizontal trackers, a long horizontal tube is supported on bearings mounted upon pylons or frames. The axis of the tube is on a north–south line. Panels are mounted upon the tube, and the tube will rotate on its axis to track the apparent motion of the Sun through the day. ;Horizontal single axis tracker with tilted modules (HTSAT) In HSAT, the modules are mounted flat at 0 degrees, while in HTSAT, the modules are installed at a certain tilt. It works on same principle as HSAT, keeping the axis of tube horizontal in north–south line and rotates the solar modules east to west throughout the day. These trackers are usually suitable in high latitude locations but does not take as much land space as consumed by Vertical single axis tracker (VSAT). Therefore, it brings the advantages of VSAT in a horizontal tracker and minimizes the overall cost of solar project.Vertical
;Vertical single axis tracker (VSAT) The axis of rotation for vertical single axis trackers is vertical with respect to the ground. These trackers rotate from East to West over the course of the day. Such trackers are more effective at high latitudes than are horizontal axis trackers. Field layouts must consider shading to avoid unnecessary energy losses and to optimize land utilization. Also optimization for dense packing is limited due to the nature of the shading over the course of a year. Vertical single axis trackers typically have the face of the module oriented at an angle with respect to the axis of rotation. As a module tracks, it sweeps a cone that is rotationally symmetric around the axis of rotation.Tilted
;Tilted single axis tracker (TSAT)Dual axis trackers
Dual axis trackers have two degrees of freedom that act as axes of rotation. These axes are typically normal to one another. The axis that is fixed with respect to the ground can be considered a primary axis. The axis that is referenced to the primary axis can be considered a secondary axis. There are several common implementations of dual axis trackers. They are classified by the orientation of their primary axes with respect to the ground. Two common implementations are tip-tilt dual axis trackers (TTDAT) and azimuth-altitude dual axis trackers (AADAT). The orientation of the module with respect to the tracker axis is important when modeling performance. Dual axis trackers typically have modules oriented parallel to the secondary axis of rotation. Dual axis trackers allow for optimum solar energy levels due to their ability to follow the Sun vertically and horizontally. No matter where the Sun is in the sky, dual axis trackers are able to angle themselves to be in direct contact with the Sun.Tip–tilt
Azimuth-altitude
An azimuth–altitude (or alt-azimuth) dual axis tracker (AADAT) has its primary axis (the azimuth axis) vertical to the ground. The secondary axis, often called elevation axis, is then typically normal to the primary axis. They are similar to tip-tilt systems in operation, but they differ in the way the array is rotated for daily tracking. Instead of rotating the array around the top of the pole, AADAT systems can use a large ring mounted on the ground with the array mounted on a series of rollers. The main advantage of this arrangement is the weight of the array is distributed over a portion of the ring, as opposed to the single loading point of the pole in the TTDAT. This allows AADAT to support much larger arrays. Unlike the TTDAT, however, the AADAT system cannot be placed closer together than the diameter of the ring, which may reduce the system density, especially considering inter-tracker shading.Construction and (Self-)Build
As described later, the economical balance between cost of panel and tracker is not trivial. The steep drop in cost for solar panels in the early 2010s made it more challenging to find a sensible solution. As can be seen in the attached media files, most constructions use industrial and/or heavy materials unsuitable for small or craft workshops. Even commercial offers may have rather unsuitable solutions (a big rock) for stabilization. For a small (amateur/enthusiast) construction, following criteria have to be met: economy, stability of end product against elemental hazards, ease of handling materials and joinery.Tracker type selection
The selection of tracker type is dependent on many factors including installation size, electric rates, government incentives, land constraints, latitude, and local weather. Horizontal single axis trackers are typically used for large distributed generation projects and utility scale projects. The combination of energy improvement and lower product cost and lower installation complexity results in compelling economics in large deployments. In addition the strong afternoon performance is particularly desirable for large grid-tied photovoltaic systems so that production will match the peak demand time. Horizontal single axis trackers also add a substantial amount of productivity during the spring and summer seasons when the Sun is high in the sky. The inherent robustness of their supporting structure and the simplicity of the mechanism also result in high reliability which keeps maintenance costs low. Since the panels are horizontal, they can be compactly placed on the axle tube without danger of self-shading and are also readily accessible for cleaning. A vertical axis tracker pivots only about a vertical axle, with the panels either vertical, at a fixed, adjustable, or tracked elevation angle. Such trackers with fixed or (seasonally) adjustable angles are suitable for high latitudes, where the apparent solar path is not especially high, but which leads to long days in summer, with the Sun traveling through a long arc. Dual axis trackers are typically used in smaller residential installations and locations with very high government feed in tariffs.Multi-mirror concentrating PV
Drive types
Active tracker
Active trackers use motors and gear trains to perform solar tracking. They can use microprocessors and sensors, date and time-based algorithms, or a combination of both to detect the position of the sun. In order to control and manage the movement of these massive structures special slewing drives are designed and rigorously tested. The technologies used to direct the tracker are constantly evolving and recent developments at Google and Eternegy have included the use of wire-ropes and winches to replace some of the more costly and more fragile components.Passive tracker
Manual tracking
In some developing nations, drives have been replaced by operators who adjust the trackers. This has the benefits of robustness, having staff available for maintenance and creating employment for the population in the vicinity of the site.Rotating buildings
In Freiburg im Breisgau, Germany, Rolf Disch built the Heliotrop in 1996, a residential building that is rotating with the sun and has an additional dual axis photovoltaic sail on the roof. It's producing four times the amount of energy the building consumes. The Gemini House is a unique example of a vertical axis tracker. This cylindrical house inDisadvantages
Trackers add cost and maintenance to the system - if they add 25% to the cost, and improve the output by 25%, the same performance can be obtained by making the system 25% larger, eliminating the additional maintenance.See also
* Air mass coefficient *References
{{DEFAULTSORT:Solar Tracker Solar energy Tracking Photovoltaics