A solar fuel is a
synthetic fuel produced using
solar energy
Solar energy is the radiant energy from the Sun's sunlight, light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is a ...
, through photochemical (i.e.
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
activation
In chemistry and biology, activation is the process whereby something is prepared or excited for a subsequent reaction.
Chemistry
In chemistry, "activation" refers to the reversible transition of a molecule into a nearly identical chemical or ...
of certain
chemical reaction
A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s), photobiological (i.e.,
artificial photosynthesis),
electrochemical
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
(i.e. using
solar electricity to drive an
endogenic reaction such as
hydroelectrolysis),
or
thermochemical methods (i.e., through the use of solar heat supplied by concentrated solar thermal energy to drive a chemical reaction).
Sunlight
Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
is the primary
energy source, with its
radiant energy
In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic radiation, electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calcul ...
being
transduced to
chemical energy
Chemical energy is the energy of chemical substances that is released when the substances undergo a chemical reaction and transform into other substances. Some examples of storage media of chemical energy include batteries, Schmidt-Rohr, K. (20 ...
stored in
bonds, typically by
reducing protons
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' ( elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an electron (the pro ...
to
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, or
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
to
organic compounds
Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
.
A solar fuel can be produced and stored for later use, when sunlight is not available, making it an alternative to
fossil fuels
A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geologica ...
and batteries. Examples of such fuels are hydrogen, ammonia, and hydrazine.
Diverse
photocatalysts are being developed to carry these reactions in a sustainable,
environmentally friendly
Environment friendly processes, or environmental-friendly processes (also referred to as eco-friendly, nature-friendly, and green), are sustainability and marketing terms referring to goods and services, laws, guidelines and policies that c ...
way.
Overview
The world's dependence on the declining reserves of fossil fuels poses not only
environmental problems but also
geopolitical ones.
Solar fuels, in particular hydrogen, are viewed as an alternative source of energy for replacing fossil fuels especially where storage is essential.
Electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
can be produced directly from sunlight through
photovoltaics
Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commerciall ...
, but this form of energy is rather inefficient to store compared to hydrogen.
[ A solar fuel can be produced when and where sunlight is available, and stored and transported for later usage. This makes it much more convenient, because it can be used in situations where direct sunlight is not available.
The most widely researched solar fuels are hydrogen, because the only product of using this fuel is water, and products of photochemical carbon dioxide reduction, which are more conventional fuels like methane and propane. Upcoming research also involves ammonia and related substances (i.e. hydrazine). These can address the challenges that come with hydrogen, by being a more compact and safer way of storing hydrogen. Direct ammonia fuel cells are also being researched.]
Solar fuels can be produced via direct or indirect processes. Direct processes harness the energy in sunlight to produce a fuel without intermediary energy conversions. Solar thermochemistry uses the heat of the sun directly to heat a receiver adjacent to the solar reactor where the thermochemical process is performed. In contrast, indirect processes have solar energy converted to another form of energy first (such as biomass
Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how ...
or electricity) that can then be used to produce a fuel. Indirect processes have been easier to implement but have the disadvantage of being less efficient than the direct method. Therefore, direct methods should be considered more interesting than their less efficient counterparts. New research therefore focusses more on this direct conversion, but also in fuels that can be used immediately to balance the power grid.[
]
Hydrogen production
Photoelectrochemical
In a solar photoelectrochemical process, hydrogen can be produced by electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
. To use sunlight in this process, a photoelectrochemical cell can be used, where one photosensitized electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
converts light into an electric current that is then used for water splitting. One such type of cell is the dye-sensitized solar cell. This is an indirect process, since it produces electricity that then is used to form hydrogen. Another indirect process using sunlight is conversion of biomass to biofuel
Biofuel is a fuel that is produced over a short time span from Biomass (energy), biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricu ...
using photosynthetic organisms; however, most of the energy harvested by photosynthesis
Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
is used in life-sustaining processes and therefore lost for energy use.[
A ]semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
can also be used as the photosensitizer. When a semiconductor is hit by a photon with an energy higher than the bandgap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the ...
, an electron is excited to the conduction band and a hole is created in the valence band. Due to band bending, the electrons and holes move to the surface, where these charges are used to split the water molecules. Many different materials have been tested, but none so far have shown the requirements for practical application.
Photochemical
In a photochemical process, the sunlight is directly used to split water into hydrogen and oxygen. Because the absorption spectrum of water does not overlap with the emission spectrum of the sun, direct dissociation of water cannot take place; a photosensitizer needs to be used. Several such catalysts have been developed as proof of concept, but not yet scaled up for commercial use; nevertheless, their relative simplicity gives the advantage of potential lower cost and increased energy conversion efficiency. One such proof of concept is the "artificial leaf" developed by Nocera and coworkers: a combination of metal oxide-based catalysts and a semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
solar cell
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. produces hydrogen upon illumination, with oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
as the only byproduct.
Photobiological
In a photobiological process, the hydrogen is produced using photosynthetic microorganisms (green microalgae and cyanobacteria
Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
) in photobioreactors. Some of these organisms produce hydrogen upon switching culture
Culture ( ) is a concept that encompasses the social behavior, institutions, and Social norm, norms found in human societies, as well as the knowledge, beliefs, arts, laws, Social norm, customs, capabilities, Attitude (psychology), attitudes ...
conditions; for example, '' Chlamydomonas reinhardtii'' produces hydrogen anaerobically under sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
deprivation, that is, when cells are moved from one growth medium to another that does not contain sulfur, and are grown without access to atmospheric oxygen. Another approach was to abolish activity of the hydrogen-oxidizing (uptake) hydrogenase enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
in the diazotrophic cyanobacterium '' Nostoc punctiforme'', so that it would not consume hydrogen that is naturally produced by the nitrogenase enzyme in nitrogen-fixing
Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
conditions. This ''N. punctiforme'' mutant could then produce hydrogen when illuminated with visible light.
Another mutant Cyanobacteria
Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
, Synechocystis, is using genes of the bacteria Rubrivivax gelatinosus CBS to produce hydrogen. The CBS bacteria produce hydrogen through the oxidation of carbon monoxide. Researchers are working to implement these genes into the Synechocystis. If these genes can be applied, it will take some effort to overcome the problems of oxygen inhibition in the production of hydrogen, but it is estimated that this process can potentially yield as much as 10% solar energy capture. This makes photobiological research a very exciting and promising branch of the hydrogen production explorations. Still the problems of overcoming the short-term nature of algal hydrogen production are many and research is in the early stages. However, this research provides a viable way to industrialize these renewable and environmental friendly processes.
Thermochemical
In the solar thermochemical process, water is split into hydrogen and oxygen using direct solar heat, rather than electricity, inside a high temperature solar reactor which receives highly concentrated solar flux from a solar field of heliostats that focus the highly concentrated sunlight into the reactor.
The two most promising routes are the two step cerium oxide cycle and the copper chlorine hybrid cycle. For the cerium oxide cycle the first step is to strip the CeO3 into Ce2O3 at more than 1400 °C. After the thermal reduction step to reduce the metal oxide, hydrogen is then produced through hydrolysis at around 800 °C. The copper chloride cycle requires a lower temperature (~500°C), which makes this process more efficient, but the cycle contains more steps and is also more complex than the cerium oxide cycle.
Because hydrogen manufacture requires continuous performance, the solar thermochemical process includes thermal energy storage. Another thermochemical method uses solar reforming of methane, a process that replicates traditional fossil fuel reforming process but substitutes solar heat.
In a November 2021 publication in Nature
Nature is an inherent character or constitution, particularly of the Ecosphere (planetary), ecosphere or the universe as a whole. In this general sense nature refers to the Scientific law, laws, elements and phenomenon, phenomena of the physic ...
, Aldo Steinfeld of Swiss technological university ETH Zurich
ETH Zurich (; ) is a public university in Zurich, Switzerland. Founded in 1854 with the stated mission to educate engineers and scientists, the university focuses primarily on science, technology, engineering, and mathematics. ETH Zurich ran ...
reported an artificial photosynthesis where carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
and water vapour absorbed from the air are passed over a cerium oxide catalyst heated by concentrated solar power to produce hydrogen and carbon monoxide, transformed through the Fischer-Tropsch process into complex hydrocarbons forming methanol
Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
, a liquid fuel
Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable ...
.
Scaling could produce the of aviation fuel used in 2019 with a surface of : 0.5% of the Sahara Desert
The Sahara (, ) is a desert spanning across North Africa. With an area of , it is the largest hot desert in the world and the list of deserts by area, third-largest desert overall, smaller only than the deserts of Antarctica and the northern Ar ...
.
One author, Philipp Furler, leads specialist Synhelion, which in 2022 was building a solar fuel production facility at Jülich, west of Cologne
Cologne ( ; ; ) is the largest city of the States of Germany, German state of North Rhine-Westphalia and the List of cities in Germany by population, fourth-most populous city of Germany with nearly 1.1 million inhabitants in the city pr ...
, before another one in Spain.[
Swiss Airlines, part of the Lufthansa Group, should become its first customer in 2023.]
Carbon dioxide reduction
Carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
(CO2) can be reduced to carbon monoxide
Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
(CO) and other more reduced compounds, such as methane
Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
, using the appropriate photocatalysts. One early example was the use of Tris(bipyridine)ruthenium(II) chloride (Ru(bipy)3Cl2) and cobalt chloride (CoCl2) for CO2 reduction to CO. In recent years many new catalysts have been found to reduce CO2 into CO, after which the CO could be used to make hydrocarbons using for example the Fischer-Tropsch process. The most promising system for the solar-powered reduction of CO2 is the combination of a photovoltaic cell with an electrochemical cell (PV+EC). Using solar-driven processes, CO2 can also be converted to other products such as formate and alcohols.
For the photovoltaic cell the highly efficient GaInP/GaAs/Ge solar cell
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. has been used, but many other series-connected and/or tandem (multi-junction) PV architectures can be employed to deliver the required voltage and current density to drive the CO2 reduction reactions and provide reasonable product outflow. The solar cells/panels can be placed in direct contact with the electrolyzer(s), which can bring advantages in terms of system compactness and thermal management of both technologies, or separately for instance by placing the PV outdoors exposed to sunlight and the EC systems protected indoors.
The currently best performing electrochemical cell is the gas diffusion electrode (GED) flow cell. In which the CO2 reacts on Ag nanoparticles to produce CO. Solar to CO efficiencies of up to 19% have been reached, with minimal loss in activity after 20h.
CO can also be produced without a catalyst using microwave plasma driven dissociation of CO2. This process is relatively efficient, with an electricity to CO efficiency of up to 50%, but with low conversion around 10%. These low conversions are not ideal, because CO and CO2 are hard to separate at large scale in a efficient manner. The big upside of this process is that it can be turned off and on quite rapidly and does not use scarce materials. The (weakly ionised) plasma is produced using microwaves, these microwaves can accelerate the free electrons
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
in the plasma. These electrons interact with the CO2 which vibrationally excite the CO2, this leads to dissociation of the CO2 to CO. The excitation and dissociation happens fast enough that only a little bit of the energy is converted to heat, which keeps the efficiency high. The dissociation also produces an oxygen radical, which reacts with CO2 to CO and O2.
Also in this case, the use of microorganisms has been explored. Using genetic engineering
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of Genetic engineering techniques, technologies used to change the genet ...
and synthetic biology
Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms. It applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nat ...
techniques, parts of or whole biofuel-producing metabolic pathways
In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical ...
can be introduced in photosynthetic organisms. One example is the production of 1-butanol in '' Synechococcus elongatus'' using enzymes from '' Clostridium acetobutylicum'', ''Escherichia coli
''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'' and '' Treponema denticola''. One example of a large-scale research facility exploring this type of biofuel production is the AlgaePARC in the Wageningen University and Research Centre, Netherlands
, Terminology of the Low Countries, informally Holland, is a country in Northwestern Europe, with Caribbean Netherlands, overseas territories in the Caribbean. It is the largest of the four constituent countries of the Kingdom of the Nether ...
.
Ammonia and hydrazine production
Hydrogen rich substances as ammonia
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
and hydrazine
Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
are great for storing hydrogen. This is due to their energy density, for ammonia at least 1.3 times that of liquid hydrogen. Hydrazine is almost twice as dense in energy compared to liquid hydrogen, however a downside is that dilution is required in the use of direct hydrazine fuel cells, which lowers the overall power one can get from this fuel cell. Besides the high volumetric density, ammonia and hydrous hydrazine have a low flammability, which makes it superior to hydrogen by lowering the storage and transportation costs.
Ammonia
Direct ammonia
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
fuel cells
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in req ...
are researched for this exact reason and new studies presented a new integrated solar-based ammonia synthesis and fuel cell. The solar base follows from excess solar power that is used to synthesize ammonia. This is done by using an ammonia electrolytic cell (AEC) in combination with a proton exchange membrane (PEM) fuel cell. When a dip in solar power occurs, a direct ammonia fuel cell kicks into action providing the lacking energy. This recent research (2020) is a clear example of efficient use of energy, which is essentially done by temporary storage and use of ammonia as a fuel. Storage of energy in ammonia does not degrade over time, which is the case with batteries and flywheels. This provides long-term energy storage. This compact form of energy has the additional advantage that excess energy can easily be transported to other locations. This needs to be done with high safety measures due to the toxicity of ammonia for humans. Further research needs to be done to complement this system with wind energy and hydro-power plants to create a hybrid system to limit the interruptions in power supply. It is necessary to also investigate on the economic performance of the proposed system. Some scientists envision a new ammonia economy that is almost the same as the oil industry, but with the enormous advantage of inexhaustible carbon-free power. This so called green ammonia is considered as a potential fuel for super large ships. South Korean shipbuilder DSME plans on commercializing these ships by 2025.
Hydrazine
Another way of storing energy is with the use of hydrazine
Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
. This molecule is related to ammonia and has the potential to be equally as useful as ammonia. It can be created from ammonia and hydrogen peroxide
Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
or via chlorine based oxidations. This makes it an even denser energy storing fuel. The downside of hydrazine is that it is very toxic and that it will react with oxygen quite violently. This makes it an ideal fuel for oxygen low area's such as space. Recent launched Iridium NEXT satellites have hydrazine as their source of energy. However toxic, this fuel has great potential, because safety measures can be increased sufficiently to safely transport and convert hydrazine back into hydrogen and ammonia. Researchers discovered a way to decompose hydrazine with a photo catalysis system that works over the entire visible-light region. This means that sunlight can not only be used to produce hydrazine, but also to produce hydrogen from this fuel. The decomposition of hydrazine is done with a p-n bilayer consisting of fullerene (C60), also known as "buckeyballs" which is a n-type semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
and zinc phthalocyanine (ZnPc) which is a p-type semiconductor creating an organic photo catalysis system. This system uses visible light irradiation to excite electrons to the n-type semiconductor creating an electric current. The holes created in the p-type semiconductor are forced in the direction of the so called Nafion part of the device, which oxidizes hydrazine to nitrogen gas and dissolved hydrogen ions. This was done in the first compartment of the fuel cell. The hydrogen ions travel through a salt bridge
In electrochemistry, a salt bridge or ion bridge is an essential laboratory device discovered over 100 years ago. It contains an electrolyte solution, typically an inert solution, used to connect the Redox, oxidation and reduction Half cell, ...
to another compartment to be reduced to hydrogen gas by the electrons, gained by the interaction with light, from the first compartment. Thus creating hydrogen, which can be used in fuel cells. This promising studies shows that hydrazine is a solar fuel that has great potential to become very useful in the energy transition.
A different approach to hydrazine are the direct fuel cells. The concepts for these cells have been developed since the 1960s. Recent studies provide much better direct hydrazine fuel cells, for example with the use of hydrogen peroxide as an oxidant. Making the anode
An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
basic and the cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
acidic increased the power density a lot, showing high peaks of around 1 W/cm2 at a temperature of 80 degrees Celsius. As mentioned earlier the main weakness of direct hydrazine fuel cells is the high toxicity of hydrazine and its derivatives. However hydrous hydrazine, which is a water-like liquid retains the high hydrogen density and can be stored and transported safely using the existing fuel infrastructure. Researchers also aim for self-powered fuel cells involving hydrazine. These fuel cells make use of hydrazine in two ways, namely as the fuel for a direct fuel cell and as the splitting target. This means that one only needs hydrazine to produce hydrogen with this fuel cell, so no external power is needed. This is done with the use of iron doped cobalt sulfide nanosheets. The doping with iron decreases the free-energy changes of hydrogen adsorption and hydrazine dehydrogenation. This method has a 20 hour stability and 98% Faradaic efficiency, which is comparable with the best reported claims of self-powered hydrogen generating cells.
Other applications
* Electrolysis of water for hydrogen production
Hydrogen gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Article in press. Most hydrogen is ''gray hydrogen'' made through steam methane reforming. In this process, ...
combined with solar photovoltaics using alkaline
In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The ...
, PEM, and SOEC electrolyzers; This basic use of solar light generated electric power to separate water into hydrogen and oxygen has proven a little bit more efficient than for example hydrogen capture by steam reforming. The alkaline production technology of hydrogen has low costs and is considered mature. This has a consequence that the yield per unit of time is significantly higher than when using PEM technology. However, PEM technology has no corrosion issues and is more efficient, whereas alkaline production technology has the disadvantage of corrosion and worse efficiency. In addition to that, PEM technology has a fast start-up and simple maintenance. Though, in bulk production the alkaline hydrogen production technology is superior.
* Heliogen claims success in the use of solar heliostats used to direct sunlight to a tower, to reach temperatures over 1000°C in the production of hydrogen. Temperatures above 2500°C can thermochemically split water into hydrogen and oxygen without the use of electricity. This can be done using the heat of nuclear power plants or by adaptive solar mirror fields to redirect the sunlight to reach high temperatures needed for these thermochemical processes. However, this way of producing hydrogen is in its infancy and it has not yet been proven that this production hydrogen is profitable and efficient, because it has to compete with other, mature technologies.[Perret, R. (2011]
"Solar Thermochemical Hydrogen Production Research (STCH)"
Sandia National Laboratories Retrieved 25 Januari 2021
See also
* Carbon-neutral fuel
* Photocatalytic water splitting
* Renewable energy
Renewable energy (also called green energy) is energy made from renewable resource, renewable natural resources that are replenished on a human lifetime, human timescale. The most widely used renewable energy types are solar energy, wind pow ...
* Solar chemical
* Solar–hydrogen energy cycle
References
{{Reflist
Alternative fuels
Photochemistry
Renewable energy technology
Renewable fuels
Fuel production