HOME

TheInfoList



OR:

A seedling is a young
sporophyte A sporophyte () is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase. Life cycle The sporophyte develops from the zygote pr ...
developing out of a plant embryo from a seed. Seedling development starts with
germination Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, fer ...
of the seed. A typical young seedling consists of three main parts: the radicle (embryonic root), the hypocotyl (embryonic shoot), and the cotyledons (seed leaves). The two classes of flowering plants (angiosperms) are distinguished by their numbers of seed leaves: monocotyledons (monocots) have one blade-shaped cotyledon, whereas
dicotyledon The dicotyledons, also known as dicots (or, more rarely, dicotyls), are one of the two groups into which all the flowering plants (angiosperms) were formerly divided. The name refers to one of the typical characteristics of the group: namely, t ...
s (dicots) possess two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be
acotyledon Acotyledon is used to refer to seed plants or spermatophytes that lack cotyledons, such as orchids and dodder. Orchid seeds are tiny with underdeveloped embryos. They depend on mycorrhizal fungi for their early nutrition so are myco-heterotrophs at ...
s. The plumule is the part of a seed embryo that develops into the shoot bearing the first true leaves of a plant. In most seeds, for example the sunflower, the plumule is a small conical structure without any leaf structure. Growth of the plumule does not occur until the cotyledons have grown above ground. This is epigeal germination. However, in seeds such as the broad bean, a leaf structure is visible on the plumule in the seed. These seeds develop by the plumule growing up through the soil with the cotyledons remaining below the surface. This is known as hypogeal germination.


Photomorphogenesis and etiolation

Dicot seedlings grown in the light develop short hypocotyls and open cotyledons exposing the epicotyl. This is also referred to as
photomorphogenesis In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes ...
. In contrast, seedlings grown in the dark develop long hypocotyls and their cotyledons remain closed around the epicotyl in an ''apical hook''. This is referred to as skotomorphogenesis or etiolation. Etiolated seedlings are yellowish in color as
chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to a ...
synthesis and
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
development depend on light. They will open their cotyledons and turn green when treated with light. In a natural situation, seedling development starts with skotomorphogenesis while the seedling is growing through the soil and attempting to reach the light as fast as possible. During this phase, the cotyledons are tightly closed and form the ''apical hook'' to protect the shoot apical meristem from damage while pushing through the soil. In many plants, the seed coat still covers the cotyledons for extra protection. Upon breaking the surface and reaching the light, the seedling's developmental program is switched to photomorphogenesis. The cotyledons open upon contact with light (splitting the seed coat open, if still present) and become green, forming the first photosynthetic organs of the young plant. Until this stage, the seedling lives off the energy reserves stored in the seed. The opening of the cotyledons exposes the shoot apical meristem and the ''plumule'' consisting of the first ''true leaves'' of the young plant. The seedlings sense light through the light receptors phytochrome (red and far-red light) and cryptochrome (blue light). Mutations in these photo receptors and their
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
components lead to seedling development that is at odds with light conditions, for example seedlings that show photomorphogenesis when grown in the dark..


Seedling growth and maturation

Once the seedling starts to photosynthesize, it is no longer dependent on the seed's energy reserves. The apical meristems start growing and give rise to the root and shoot. The first "true"
leaves A leaf (plural, : leaves) is any of the principal appendages of a vascular plant plant stem, stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", wh ...
expand and can often be distinguished from the round cotyledons through their species-dependent distinct shapes. While the plant is growing and developing additional leaves, the cotyledons eventually
senesce Senescence () or biological aging is the gradual deterioration of functional characteristics in living organisms. The word ''senescence'' can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence invol ...
and fall off. Seedling growth is also affected by mechanical stimulation, such as by wind or other forms of physical contact, through a process called thigmomorphogenesis. Temperature and light intensity interact as they affect seedling growth; at low light levels about 40 lumens/m2 a day/night temperature regime of 28 °C/13 °C is effective (Brix 1972).Brix, H. 1972. Growth response of Sitka spruce and white spruce seedlings to temperature and light intensity. Can. Dep. Environ., Can. For. Serv., Pacific For. Res. Centre, Victoria BC, Inf. Rep. BC-X-74. 17 p. A
photoperiod Photoperiodism is the physiological reaction of organisms to the length of night or a dark period. It occurs in plants and animals. Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light a ...
shorter than 14 hours causes growth to stop, whereas a photoperiod extended with low light intensities to 16 h or more brings about continuous (free) growth. Little is gained by using more than 16 h of low light intensity once seedlings are in the free growth mode. Long photoperiods using high light intensities from 10,000 to 20,000 lumens/m2 increase dry matter production, and increasing the photoperiod from 15 to 24 hours may double dry matter growth (Pollard and Logan 1976, Carlson 1979).Pollard, D.F.W.; Logan, K.T. 1976. Prescription for the aerial environment for a plastic greenhouse nursery. p.181–191 ''in'' Proc. 12th Lake States For. Tree Improv. Conf. 1975. USDA, For. Serv., North Central For. Exp. Sta., St. Paul MN, Gen. Tech. Rep. NC-26.Carlson, L.W. 1979. Guidelines for rearing containerized conifer seedlings in the prairie provinces. Can. Dep. Environ., Can. For. Serv., Edmonton AB, Inf. Rep. NOR-X-214. 62 p. (Cited in Nienstaedt and Zasada 1990). The effects of carbon dioxide enrichment and nitrogen supply on the growth of white spruce and trembling aspen were investigated by Brown and Higginbotham (1986).Brown, K.; Higginbotham, K.O. 1986. Effects of carbon dioxide enrichment and nitrogen supply on growth of boreal tree seedlings. Tree Physiol. 2(1/3):223–232. Seedlings were grown in controlled environments with ambient or enriched atmospheric CO2 (350 or 750 ''f''1/L, respectively) and with nutrient solutions with high, medium, and low N content (15.5, 1.55, and 0.16 mM). Seedlings were harvested, weighed, and measured at intervals of less than 100 days. N supply strongly affected biomass accumulation, height, and leaf area of both species. In white spruce only, the root weight ratio (RWR) was significantly increased with the low-nitrogen regime. CO2 enrichment for 100 days significantly increased the leaf and total biomass of white spruce seedlings in the high-N regime, RWR of seedlings in the medium-N regime, and root biomass of seedlings in the low-N regime. First-year seedlings typically have high mortality rates, drought being the principal cause, with roots having been unable to develop enough to maintain contact with soil sufficiently moist to prevent the development of lethal seedling water stress. Somewhat paradoxically, however, Eis (1967a)Eis, S. 1967a. Establishment and early development of white spruce in the interior of British Columbia. For. Chron. 43:174–177. observed that on both mineral and litter seedbeds, seedling mortality was greater in moist habitats (alluvium and ''Aralia–Dryopteris'') than in dry habitats (''Cornus''–Moss). He commented that in dry habitats after the first growing season surviving seedlings appeared to have a much better chance of continued survival than those in moist or wet habitats, in which frost heave and competition from lesser vegetation became major factors in later years. The annual mortality documented by Eis (1967a) is instructive.


Pests and diseases

Seedlings are particularly vulnerable to attack by pests and diseases and can consequently experience high mortality rates. Pests and diseases which are especially damaging to seedlings include damping off, cutworms, slugs and snails.


Transplanting

Seedlings are generally transplanted when the first pair of true leaves appear. A shade may be provided if the area is arid or hot. A commercially available vitamin hormone concentrate may be used to avoid transplant shock which may contain
thiamine hydrochloride Thiamine, also known as thiamin and vitamin B1, is a vitamin, an essential micronutrient, that cannot be made in the body. It is found in food and commercially synthesized to be a dietary supplement or medication. Phosphorylated forms of thia ...
,
1-Naphthaleneacetic acid 1-Naphthaleneacetic acid (NAA) is an organic compound with the formula C10H7CH2CO2H. This colorless solid is soluble in organic solvents. It features a carboxylmethyl group (CH2CO2H) linked to the "1-position" of naphthalene. Use and regulation N ...
and indole butyric acid.


Images


See also

* Plant propagation *
Potting soil Potting soil or growing media, also known as potting mix or potting compost (UK), is a substrate used to grow plants in containers. The first recorded use of the term is from an 1861 issue of the ''American Agriculturist''. Despite its name, lit ...


References


Bibliography

* P.H. Raven, R.F. Evert, S.E. Eichhorn (2005): ''Biology of Plants'', 7th Edition, W.H. Freeman and Company Publishers, New York, {{Authority control Plant morphology Plant reproduction