Saturn is the sixth
planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
from the
Sun and the second largest in the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, after
Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
. It is a
gas giant, with an average radius of about 9 times that of
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. It has an eighth the average density of Earth, but is over 95 times more massive. Even though Saturn is almost as big as Jupiter, Saturn has less than a third its mass. Saturn orbits the Sun at a distance of , with an
orbital period of 29.45 years.
Saturn's interior is thought to be composed of a rocky core, surrounded by a deep layer of
metallic hydrogen, an intermediate layer of
liquid hydrogen and
liquid helium, and an outer layer of gas. Saturn has a pale yellow hue, due to
ammonia crystals in its upper atmosphere. An
electrical current in the metallic hydrogen layer is thought to give rise to Saturn's planetary
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
, which is weaker than Earth's, but has a
magnetic moment 580 times that of Earth because of Saturn's greater size. Saturn's magnetic field strength is about a twentieth that of Jupiter.
The outer
atmosphere
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
is generally bland and lacking in contrast, although long-lived features can appear.
Wind speeds on Saturn can reach .
The planet has a bright and extensive
system of rings, composed mainly of ice particles, with a smaller amount of rocky debris and
dust. At least
274 moons orbit the planet, of which 63 are officially named; these do not include the hundreds of
moonlet
A moonlet, minor moon, minor natural satellite, or minor satellite is a particularly small natural satellite orbiting a planet, dwarf planet, or other minor planet.
Up until 1995, moonlets were only hypothetical components of Saturn's F-ring ...
s in the rings.
Titan, Saturn's largest moon and the second largest in the Solar System, is larger (but less massive) than the planet
Mercury and is the only moon in the Solar System that has a substantial atmosphere.
Name and symbol
Saturn is named after the Roman
god of wealth and agriculture, who was the father of the god Jupiter. Its
astronomical symbol has been traced back to the Greek
Oxyrhynchus Papyri
The Oxyrhynchus Papyri are a group of manuscripts discovered during the late nineteenth and early twentieth centuries by papyrology, papyrologists Bernard Pyne Grenfell and Arthur Surridge Hunt at an ancient Landfill, rubbish dump near Oxyrhync ...
, where it can be seen to be a Greek
kappa-
rho
Rho (; uppercase Ρ, lowercase ρ or ; or ) is the seventeenth letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician alphabet, Phoenician letter resh . Its uppercase form uses the same ...
ligature with a
horizontal stroke, as an abbreviation for ''Κρονος'' (
Cronus), the Greek name for the planet ().
It later came to look like a lower-case Greek
eta, with the cross added at the top in the 16th century to Christianize this pagan symbol.
The Romans named the seventh day of the week
Saturday, ''Sāturni diēs'', "Saturn's Day", for the planet Saturn.
Physical characteristics

Saturn is a
gas giant, composed predominantly of hydrogen and helium. It lacks a definite surface, though it is likely to have a solid core.
[ The planet's rotation makes it an oblate spheroid—a ball flattened at the poles and bulging at the ]equator
The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
. Its equatorial radius is more than 10% larger than the polar radius: 60,268 km versus 54,364 km (37,449 mi versus 33,780 mi). Jupiter, Uranus
Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
, and Neptune
Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
, the other giant planets in the Solar System, are less oblate. The combination of the bulge and the rotation rate means that the effective surface gravity along the equator, , is 74% of what it is at the poles and is lower than the surface gravity of Earth. However, the equatorial escape velocity, nearly , is much higher than that of Earth.
Saturn is the only planet of the Solar System that is less dense than water—about 30% less.[ Although Saturn's core is considerably denser than water, the average specific density of the planet is , because of the atmosphere. Jupiter has 318 times Earth's mass,] and Saturn is 95 times Earth's mass. Together, Jupiter and Saturn hold 92% of the total planetary mass in the Solar System.[
]
Internal structure
Despite consisting mostly of hydrogen and helium, most of Saturn's mass is not in the gas phase, because hydrogen becomes a non-ideal liquid when the density is above , which is reached at a radius containing 99.9% of Saturn's mass. The temperature, pressure, and density inside Saturn all rise steadily toward the core, which causes hydrogen to be a metal in the deeper layers.[
Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium, with trace amounts of various volatiles.][ Analysis of the distortion shows that Saturn is substantially more centrally condensed than ]Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
and therefore contains much more material denser than hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
near its center. Saturn's central regions are about 50% hydrogen by mass, and Jupiter's are about 67% hydrogen.
This core is similar in composition to Earth, but is more dense. The examination of Saturn's gravitational moment, in combination with physical models of the interior, has allowed constraints to be placed on the mass of Saturn's core. In 2004, scientists estimated that the core must be 9–22 times the mass of Earth, which corresponds to a diameter of about . However, measurements of Saturn's rings suggest a much more diffuse core, with a mass equal to about 17 Earths and a radius equal to about 60% of Saturn's entire radius. This is surrounded by a thicker, liquid metallic hydrogen layer, followed by a liquid layer of helium-saturated molecular hydrogen, which gradually transitions to a gas as altitude increases. The outermost layer spans about and consists of gas.
Saturn has a hot interior, reaching at its core, and radiates 2.5 times more energy into space than it receives from the Sun. Jupiter's thermal energy
The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including:
* Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
is generated by the Kelvin–Helmholtz mechanism of slow gravitational compression; but such a process alone may not be sufficient to explain heat production for Saturn, because it is less massive. An alternative or additional mechanism may be the generation of heat through the "raining out" of droplets of helium deep in Saturn's interior. As the droplets descend through the lower-density hydrogen, the process releases heat by friction and leaves Saturn's outer layers depleted of helium.[ These descending droplets may have accumulated into a helium shell surrounding the core.][ Rainfalls of ]diamond
Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
s have been suggested to occur within Saturn, as well as in Jupiter and ice giants Uranus and Neptune.
Atmosphere
The outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume. The proportion of helium is significantly deficient compared to the abundance of this element in the Sun.[ The quantity of elements heavier than helium ( metallicity) is not known precisely, but the proportions are assumed to match the primordial abundances from the formation of the Solar System. The total mass of these heavier elements is estimated to be 19–31 times the mass of Earth, with a significant fraction located in Saturn's core region.]
Trace amounts of ammonia, acetylene, ethane, propane, phosphine, and methane
Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
have been detected in Saturn's atmosphere. The upper clouds are composed of ammonia crystals, while the lower level clouds appear to consist of either ammonium hydrosulfide () or water. Ultraviolet radiation from the Sun causes methane photolysis in the upper atmosphere, leading to a series of hydrocarbon
In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and Hydrophobe, hydrophobic; their odor is usually fain ...
chemical reactions with the resulting products being carried downward by eddies and diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
. This photochemical cycle is modulated by Saturn's annual seasonal cycle.[ ''Cassini'' observed a series of cloud features found in northern latitudes, nicknamed the "String of Pearls". These features are cloud clearings that reside in deeper cloud layers.
]
Cloud layers
Saturn's atmosphere exhibits a banded pattern similar to Jupiter's, but Saturn's bands are much fainter and are much wider near the equator. The nomenclature used to describe these bands is the same as on Jupiter. Saturn's finer cloud patterns were not observed until the flybys of the '' Voyager'' spacecraft during the 1980s. Since then, Earth-based telescopy has improved to the point where regular observations can be made.[
The composition of the clouds varies with depth and increasing pressure. In the upper cloud layers, with temperatures in the range of 100–160 K and pressures extending between 0.5–2 bar, the clouds consist of ammonia ice. Water ice clouds begin at a level where the pressure is about 2.5 bar and extend down to 9.5 bar, where temperatures range from 185 to 270 K. Intermixed in this layer is a band of ammonium hydrosulfide ice, lying in the pressure range 3–6 bar with temperatures of 190–235 K. Finally, the lower layers, where pressures are between 10 and 20 bar and temperatures are 270–330 K, contains a region of water droplets with ammonia in aqueous solution.][
Saturn's usually bland atmosphere occasionally exhibits long-lived ovals and other features common on Jupiter. In 1990, the ]Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
imaged an enormous white cloud near Saturn's equator that was not present during the ''Voyager'' encounters, and in 1994 another smaller storm was observed. The 1990 storm was an example of a Great White Spot, a short-lived phenomenon that occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere's summer solstice
The summer solstice or estival solstice occurs when one of Earth's poles has its maximum tilt toward the Sun. It happens twice yearly, once in each hemisphere ( Northern and Southern). The summer solstice is the day with the longest peri ...
.[ Previous Great White Spots were observed in 1876, 1903, 1933, and 1960, with the 1933 storm being the best observed. The latest giant storm was observed in 2010. In 2015, researchers used ]Very Large Array
The Karl G. Jansky Very Large Array (VLA) is a centimeter-wavelength radio astronomy observatory in the southwestern United States built in the 1970s. It lies in central New Mexico on the Plains of San Agustin, between the towns of Magdalena, Ne ...
telescope to study Saturnian atmosphere, and reported that they found "long-lasting signatures of all mid-latitude giant storms, a mixture of equatorial storms up to hundreds of years old, and potentially an unreported older storm at 70°N".
The winds on Saturn are the second fastest among the Solar System's planets, after Neptune's. ''Voyager'' data indicate peak easterly winds of . In images from the '' Cassini'' spacecraft during 2007, Saturn's northern hemisphere displayed a bright blue hue, similar to Uranus. The color was most likely caused by Rayleigh scattering. Thermography has shown that Saturn's south pole has a warm polar vortex, the only known example of such a phenomenon in the Solar System. Whereas temperatures on Saturn are normally −185 °C, temperatures on the vortex often reach as high as −122 °C, suspected to be the warmest spot on Saturn.[
]
Hexagonal cloud patterns
A persisting hexagonal wave pattern around the north polar vortex in the atmosphere at about 78°N was first noted in the ''Voyager'' images. The sides of the hexagon are each about long, which is longer than the diameter of the Earth. The entire structure rotates with a period of (the same period as that of the planet's radio emissions) which is assumed to be equal to the period of rotation of Saturn's interior.[ The hexagonal feature does not shift in longitude like the other clouds in the visible atmosphere.][ The pattern's origin is a matter of much speculation. Most scientists think it is a standing wave pattern in the atmosphere. Polygonal shapes have been replicated in the laboratory through differential rotation of fluids.][ Laboratory experiment of spinning disks in a liquid solution forms vortices around a stable hexagonal pattern similar to that of Saturn's.]
HST imaging of the south polar region indicates the presence of a jet stream
Jet streams are fast flowing, narrow thermal wind, air currents in the Earth's Atmosphere of Earth, atmosphere.
The main jet streams are located near the altitude of the tropopause and are westerly winds, flowing west to east around the gl ...
, but no strong polar vortex nor any hexagonal standing wave. NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
reported in November 2006 that ''Cassini'' had observed a " hurricane-like" storm locked to the south pole that had a clearly defined eyewall. Eyewall clouds had not previously been seen on any planet other than Earth. For example, images from the '' Galileo'' spacecraft did not show an eyewall in the Great Red Spot of Jupiter.
The south pole storm may have been present for billions of years. This vortex is comparable to the size of Earth, and it has winds of 550 km/h.
Magnetosphere
Saturn has an intrinsic magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
that has a simple, symmetric shape—a magnetic dipole. Its strength at the equator—0.2 gauss (20 μT)—is approximately one twentieth of that of the field around Jupiter and slightly weaker than Earth's magnetic field. As a result, Saturn's magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
is much smaller than Jupiter's.
When '' Voyager 2'' entered the magnetosphere, the solar wind pressure was high and the magnetosphere extended only 19 Saturn radii, or 1.1 million km (684,000 mi), although it enlarged within several hours, and remained so for about three days. Most probably, the magnetic field is generated similarly to that of Jupiter—by currents in the liquid metallic-hydrogen layer called a metallic-hydrogen dynamo. This magnetosphere is efficient at deflecting the solar wind particles from the Sun. The moon Titan orbits within the outer part of Saturn's magnetosphere and contributes plasma from the ionized particles in Titan's outer atmosphere. Saturn's magnetosphere, like Earth's, produces aurorae.
Orbit and rotation
The average distance between Saturn and the Sun is over 1.4 billion kilometers (9 AU). With an average orbital speed of 9.68 km/s, it takes Saturn 10,759 Earth days (or about years) to finish one revolution around the Sun. As a consequence, it forms a near 5:2 mean-motion resonance with Jupiter. The elliptical orbit of Saturn is inclined 2.48° relative to the orbital plane of the Earth. The perihelion and aphelion distances are, respectively, 9.195 and 9.957 AU, on average. The visible features on Saturn rotate at different rates depending on latitude, and multiple rotation periods have been assigned to various regions (as in Jupiter's case).
Astronomers use three different systems for specifying the rotation rate of Saturn. ''System I'' has a period of (844.3°/d) and encompasses the Equatorial Zone, the South Equatorial Belt, and the North Equatorial Belt. The polar regions are considered to have rotation rates similar to ''System I''. All other Saturnian latitudes, excluding the north and south polar regions, are indicated as ''System II'' and have been assigned a rotation period of (810.76°/d). ''System III'' refers to Saturn's internal rotation rate. Based on radio emissions from the planet detected by '' Voyager 1'' and ''Voyager 2'', System III has a rotation period of (810.8°/d). System III has largely superseded System II.[
A precise value for the rotation period of the interior remains elusive. While approaching Saturn in 2004, ''Cassini'' found that the radio rotation period of Saturn had increased appreciably, to approximately .][ An estimate of Saturn's rotation (as an indicated rotation rate for Saturn as a whole) based on a compilation of various measurements from the ''Cassini'', ''Voyager'', and ''Pioneer'' probes is .][ Studies of the planet's C Ring yield a rotation period of .]
In March 2007, it was found that the variation in radio emissions from the planet did not match Saturn's rotation rate. This variance may be caused by geyser activity on Saturn's moon Enceladus. The water vapor emitted into Saturn's orbit by this activity becomes charged and creates a drag upon Saturn's magnetic field, slowing its rotation slightly relative to the rotation of the planet.[
An apparent oddity for Saturn is that it does not have any known trojan asteroids. These are minor planets that orbit the Sun at the stable Lagrangian points, designated L4 and L5, located at 60° angles to the planet along its orbit. Trojan asteroids have been discovered for Mars, Jupiter, Uranus, and Neptune. Orbital resonance mechanisms, including secular resonance, are believed to be the cause of the missing Saturnian trojans.
]
Natural satellites
Saturn has 274 known moons, 63 of which have formal names. In addition, there is evidence of dozens to hundreds of moonlet
A moonlet, minor moon, minor natural satellite, or minor satellite is a particularly small natural satellite orbiting a planet, dwarf planet, or other minor planet.
Up until 1995, moonlets were only hypothetical components of Saturn's F-ring ...
s with diameters of 40–500 meters in Saturn's rings, which are not considered to be true moons. Titan, the largest moon, comprises more than 90% of the mass in orbit around Saturn, including the rings. Saturn's second-largest moon, Rhea, may have a tenuous ring system of its own, along with a tenuous atmosphere
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
.[
Many of the other moons are small: 131 are less than 50 km in diameter.] Traditionally, most of Saturn's moons have been named after Titans of Greek mythology. Titan is the only satellite in the Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
with a major atmosphere
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, in which a complex organic chemistry
Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
occurs. It is the only satellite with hydrocarbon lakes.
On 6 June 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan, a possible precursor for life. On 23 June 2014, NASA claimed to have strong evidence that nitrogen in the atmosphere of Titan came from materials in the Oort cloud, associated with comet
A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s, and not from the materials that formed Saturn in earlier times.
Saturn's moon Enceladus, which seems similar in chemical makeup to comets, has often been regarded as a potential habitat
In ecology, habitat refers to the array of resources, biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species' habitat can be seen as the physical manifestation of its ...
for microbial life.[ Evidence of this possibility includes the satellite's salt-rich particles having an "ocean-like" composition that indicates most of Enceladus's expelled ]ice
Ice is water that is frozen into a solid state, typically forming at or below temperatures of 0 ° C, 32 ° F, or 273.15 K. It occurs naturally on Earth, on other planets, in Oort cloud objects, and as interstellar ice. As a naturally oc ...
comes from the evaporation of liquid salt water. A 2015 flyby by ''Cassini'' through a plume on Enceladus found most of the ingredients to sustain life forms that live by methanogenesis.
In April 2014, NASA scientists reported the possible beginning of a new moon within the A Ring, which was imaged by ''Cassini'' on 15 April 2013.
Planetary rings
Saturn is probably best known for the system of planetary rings that makes it visually unique. The rings extend from outward from Saturn's equator and average approximately in thickness. They are composed predominantly of water ice, with trace amounts of tholin impurities and a peppered coating of approximately 7% amorphous carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
. The particles that make up the rings range in size from specks of dust up to 10 m. While the other gas giants also have ring systems, Saturn's is the largest and most visible.
There is a debate on the age of the rings. One side supports that they are ancient, and were created simultaneously with Saturn from the original nebular material (around 4.6 billion years ago), or shortly after the LHB (around 4.1 to 3.8 billion years ago). The other side supports that they are much younger, created around 100 million years ago. An MIT research team, supporting the latter theory, proposed that the rings are remnant of a destroyed moon of Saturn, named ″Chrysalis″.
Beyond the main rings, at a distance of 12 million km (7.5 million mi) from the planet is the sparse Phoebe ring. It is tilted at an angle of 27° to the other rings and, like Phoebe, orbits in retrograde fashion.
Some of the moons of Saturn, including Pandora and Prometheus, act as shepherd moons to confine the rings and prevent them from spreading out.[ Pan and ]Atlas
An atlas is a collection of maps; it is typically a bundle of world map, maps of Earth or of a continent or region of Earth. Advances in astronomy have also resulted in atlases of the celestial sphere or of other planets.
Atlases have traditio ...
cause weak, linear density waves in Saturn's rings that have yielded more reliable calculations of their masses.
History of observation and exploration
The observation and exploration of Saturn can be divided into three phases: (1) pre-modern observations with the naked eye, (2) telescopic observations from Earth beginning in the 17th century, and (3) visitation by space probes, in orbit or on flyby. In the 21st century, telescopic observations continue from Earth (including Earth-orbiting observatories like the Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
) and, until its 2017 retirement, from the '' Cassini'' orbiter around Saturn.
Pre-telescopic observation
Saturn has been known since prehistoric times, and in early recorded history it was a major character in various mythologies. Babylonian astronomers systematically observed and recorded the movements of Saturn.[ In ancient Greek, the planet was known as '' Phainon'', and in Roman times it was known as the "star of Saturn" or the "star of the Sun (i.e. Helios)". In ancient Roman mythology, the planet Phainon was sacred to this agricultural god, from which the planet takes its modern name.] The Romans considered the god Saturnus the equivalent of the Greek god Cronus; in modern Greek, the planet retains the name ''Cronus''—: ''Kronos''.
The Greek scientist Ptolemy
Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
based his calculations of Saturn's orbit on observations he made while it was in opposition.[ In Hindu astrology, there are nine astrological objects, known as Navagrahas. Saturn is known as " Shani" and judges everyone based on the good and bad deeds performed in life.][ Ancient Chinese and Japanese culture designated the planet Saturn as the "earth star" (). This was based on Five Elements which were traditionally used to classify natural elements.
In ]Hebrew
Hebrew (; ''ʿÎbrit'') is a Northwest Semitic languages, Northwest Semitic language within the Afroasiatic languages, Afroasiatic language family. A regional dialect of the Canaanite languages, it was natively spoken by the Israelites and ...
, Saturn is called '' Shabbathai''. Its angel is Cassiel. Its intelligence or beneficial spirit is 'Agȋȇl (), and its darker spirit (demon
A demon is a malevolent supernatural entity. Historically, belief in demons, or stories about demons, occurs in folklore, mythology, religion, occultism, and literature; these beliefs are reflected in Media (communication), media including
f ...
) is Zȃzȇl (). Zazel has been described as a great angel, invoked in Solomonic magic, who is "effective in love conjurations". In Ottoman Turkish, Urdu
Urdu (; , , ) is an Indo-Aryan languages, Indo-Aryan language spoken chiefly in South Asia. It is the Languages of Pakistan, national language and ''lingua franca'' of Pakistan. In India, it is an Eighth Schedule to the Constitution of Indi ...
, and Malay, the name of Zazel is 'Zuhal', derived from the Arabic language
Arabic (, , or , ) is a Central Semitic languages, Central Semitic language of the Afroasiatic languages, Afroasiatic language family spoken primarily in the Arab world. The International Organization for Standardization (ISO) assigns lang ...
().
Telescopic pre-spaceflight observations
Saturn's rings require at least a 15-mm-diameter telescope
A telescope is a device used to observe distant objects by their emission, Absorption (electromagnetic radiation), absorption, or Reflection (physics), reflection of electromagnetic radiation. Originally, it was an optical instrument using len ...
[ to resolve and thus were not known to exist until ]Christiaan Huygens
Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution ...
saw them in 1655 and published his observations in 1659. Galileo, with his primitive telescope in 1610,[ incorrectly thought of Saturn's appearing not quite round as two moons on Saturn's sides.][ It was not until Huygens used greater telescopic magnification that this notion was refuted, and the rings were truly seen for the first time. Huygens also discovered Saturn's moon Titan; Giovanni Domenico Cassini later discovered four other moons: Iapetus, Rhea, Tethys, and Dione. In 1675, Cassini discovered the gap now known as the Cassini Division.][
No further discoveries of significance were made until 1789 when William Herschel discovered two further moons, Mimas and Enceladus. The irregularly shaped satellite Hyperion, which has a resonance with Titan, was discovered in 1848 by a British team.][
In 1899, William Henry Pickering discovered Phoebe, a highly irregular satellite that does not rotate synchronously with Saturn as the larger moons do.][ Phoebe was the first such satellite found and it took more than a year to orbit Saturn in a retrograde orbit. During the early 20th century, research on Titan led to the confirmation in 1944 that it had a thick atmosphere—a feature unique among the Solar System's moons.][
]
Spaceflight missions
''Pioneer 11'' flyby
'' Pioneer 11'' made the first flyby of Saturn in September 1979, when it passed within of the planet's cloud tops. Images were taken of the planet and a few of its moons, although their resolution was too low to discern surface detail. The spacecraft also studied Saturn's rings, revealing the thin F-ring and the fact that dark gaps in the rings are bright when viewed at a high phase angle (towards the Sun), meaning that they contain fine light-scattering material. In addition, ''Pioneer 11'' measured the temperature of Titan.
''Voyager'' flybys
In November 1980, the '' Voyager 1'' probe visited the Saturn system. It sent back the first high-resolution images of the planet, its rings and satellites. Surface features of various moons were seen for the first time. ''Voyager 1'' performed a close flyby of Titan, increasing knowledge of the atmosphere of the moon. It proved that Titan's atmosphere is impenetrable at visible wavelengths; therefore no surface details were seen. The flyby changed the spacecraft's trajectory out of the plane of the Solar System.
Almost a year later, in August 1981, '' Voyager 2'' continued the study of the Saturn system. More close-up images of Saturn's moons were acquired, as well as evidence of changes in the atmosphere and the rings. During the flyby, the probe's turnable camera platform stuck for a couple of days and some planned imaging was lost. Saturn's gravity was used to direct the spacecraft's trajectory towards Uranus.
The probes discovered and confirmed several new satellites orbiting near or within the planet's rings, as well as the small Maxwell Gap (a gap within the C Ring) and Keeler gap (a 42 km-wide gap in the A Ring).
''Cassini–Huygens'' spacecraft
The '' Cassini–Huygens'' space probe entered orbit around Saturn on 1 July 2004. In June 2004, it conducted a close flyby of Phoebe, sending back high-resolution images and data. ''Cassini'' flyby of Saturn's largest moon, Titan, captured radar images of large lakes and their coastlines with numerous islands and mountains. The orbiter completed two Titan flybys before releasing the ''Huygens'' probe on 25 December 2004. ''Huygens'' descended onto the surface of Titan on 14 January 2005.
Starting in early 2005, scientists used ''Cassini'' to track lightning on Saturn. The power of the lightning is approximately 1,000 times that of lightning on Earth.
In 2006, NASA reported that ''Cassini'' had found evidence of liquid water reservoirs no more than tens of meters below the surface that erupt in geysers on Saturn's moon Enceladus. These jets of icy particles are emitted into orbit around Saturn from vents in the moon's south polar region. Over 100 geysers have been identified on Enceladus. In May 2011, NASA scientists reported that Enceladus "is emerging as the most habitable spot beyond Earth in the Solar System for life as we know it".
''Cassini'' photographs have revealed a previously undiscovered planetary ring, outside the brighter main rings of Saturn and inside the G and E rings. The source of this ring is hypothesized to be the crashing of a meteoroid off Janus and Epimetheus. In July 2006, images were returned of hydrocarbon lakes near Titan's north pole, the presence of which were confirmed in January 2007. In March 2007, hydrocarbon seas were found near the North pole, the largest of which is almost the size of the Caspian Sea
The Caspian Sea is the world's largest inland body of water, described as the List of lakes by area, world's largest lake and usually referred to as a full-fledged sea. An endorheic basin, it lies between Europe and Asia: east of the Caucasus, ...
. In October 2006, the probe detected an diameter cyclone-like storm with an eyewall at Saturn's south pole.
From 2004 to 2 November 2009, the probe discovered and confirmed eight new satellites. In April 2013, ''Cassini'' sent back images of a hurricane at the planet's north pole 20 times larger than those found on Earth, with winds faster than . On 15 September 2017, the ''Cassini–Huygens'' spacecraft performed the "Grand Finale" of its mission: a number of passes through gaps between Saturn and Saturn's inner rings. The atmospheric entry of ''Cassini'' ended the mission.
Possible future missions
The continued exploration of Saturn is still considered to be a viable option for NASA as part of their ongoing New Frontiers program of missions. NASA previously requested for plans to be put forward for a mission to Saturn that included the Saturn Atmospheric Entry Probe, and possible investigations into the habitability and possible discovery of life on Saturn's moons Titan and Enceladus by '' Dragonfly''.
Observation
Saturn is the most distant of the five planets easily visible to the naked eye from Earth, the other four being Mercury, Venus, Mars, and Jupiter. (Uranus, and occasionally 4 Vesta, are visible to the naked eye in dark skies.) Saturn appears to the naked eye in the night sky as a bright, yellowish point of light. The mean apparent magnitude of Saturn is 0.46 with a standard deviation of 0.34. Most of the magnitude variation is due to the inclination of the ring system relative to the Sun and Earth. The brightest magnitude, −0.55, occurs near the time when the plane of the rings is inclined most highly, and the faintest magnitude, 1.17, occurs around the time when they are least inclined. It takes approximately 29.4 years for the planet to complete an entire circuit of the ecliptic against the background constellations of the zodiac
The zodiac is a belt-shaped region of the sky that extends approximately 8° north and south celestial latitude of the ecliptic – the apparent path of the Sun across the celestial sphere over the course of the year. Within this zodiac ...
. Most people will require an optical aid (very large binoculars or a small telescope) that magnifies at least 30 times to achieve an image of Saturn's rings in which a clear resolution is present. When Earth passes through the ring plane, which occurs twice every Saturnian year (roughly every 15 Earth years), the rings briefly disappear from view because they are so thin. Such a "disappearance" will next occur in 2025, but Saturn will be too close to the Sun for observations.
Saturn and its rings are best seen when the planet is at, or near, opposition, the configuration of a planet when it is at an elongation of 180°, and thus appears opposite the Sun in the sky. A Saturnian opposition occurs every year—approximately every 378 days—and results in the planet appearing at its brightest. Both the Earth and Saturn orbit the Sun on eccentric orbits, which means their distances from the Sun vary over time, and therefore so do their distances from each other, hence varying the brightness of Saturn from one opposition to the next. Saturn also appears brighter when the rings are angled such that they are more visible. For example, during the opposition of 17 December 2002, Saturn appeared at its brightest due to the favorable orientation of its rings relative to the Earth, even though Saturn was closer to the Earth and Sun in late 2003.
From time to time, Saturn is occulted by the Moon (that is, the Moon covers up Saturn in the sky). As with all the planets in the Solar System, occultations of Saturn occur in "seasons". Saturnian occultations will take place monthly for about a 12-month period, followed by about a five-year period in which no such activity is registered. The Moon's orbit is inclined by several degrees relative to Saturn's, so occultations will only occur when Saturn is near one of the points in the sky where the two planes intersect (both the length of Saturn's year and the 18.6-Earth-year nodal precession period of the Moon's orbit influence the periodicity).
In fiction
Saturn has frequently appeared in fiction since at least 1752, when Voltaire published his novel '' Micromégas''. Early works generally depicted it as solid, whereas Saturn is later correctly described as a gaseous planet. Saturn's moons are also featured in fiction, especially Titan.
See also
* Statistics of planets in the Solar System
* Outline of Saturn
Notes
References
Further reading
*
*
*
*
*
*
External links
Saturn overview
by NASA's Science Mission Directorate
Saturn fact sheet
at the NASA Space Science Data Coordinated Archive
Saturnian System terminology
by the IAU Gazetteer of Planetary Nomenclature
''Cassini-Huygens'' legacy website
by the Jet Propulsion Laboratory
Interactive 3D gravity simulation of the Cronian system
{{Portal bar, Stars, Spaceflight, Outer space
Astronomical objects known since antiquity
Gas giants
Outer planets
Solar System