Samarium–cobalt Magnet
   HOME

TheInfoList



OR:

Samarium–cobalt (SmCo) magnets belong to the category of rare-earth magnets and are composed of samarium (Sm), a
rare-earth element The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set o ...
, and
cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
(Co), a
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
. They are among the strongest permanent magnets. They were developed in the early 1960s based on work done by Karl Strnat at
Wright-Patterson Air Force Base Wright-Patterson Air Force Base (WPAFB) is a United States Air Force base and census-designated place just east of Dayton, Ohio, in Greene County, Ohio, Greene and Montgomery County, Ohio, Montgomery counties. It includes both Wright and Patte ...
and Alden Ray at the
University of Dayton The University of Dayton (UD) is a Private university, private, Catholic research university in Dayton, Ohio, United States. Founded in 1850 by the Society of Mary (Marianists), Society of Mary, it is one of three Marianist universities in the U ...
. In particular, Strnat and Ray developed the first formulation of SmCo5. Samarium–Cobalt magnets are generally ranked similarly in strength to
neodymium magnet A nickel-plated neodymium magnet on a bracket from a hard disk drive file:Nd-magnet.jpg">Nickel-plated neodymium magnet cubes Left: high-resolution transmission electron microscopy image of Nd2Fe14B; right: crystal structure with unit cell mar ...
s, but have higher temperature ratings and higher
coercivity Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming Magnetization, demagnetized. Coercivity is usual ...
.


Attributes

Some attributes of samarium-cobalts are: * Samarium–cobalt magnets are extremely resistant to demagnetization. * These magnets have good temperature stability maximum use temperatures between and Curie temperatures from to . * They are expensive and subject to price fluctuations (cobalt is market price sensitive). * Samarium–cobalt magnets have a strong resistance to corrosion and oxidation resistance, usually do not need to be coated and can be widely used in high temperature and poor working conditions.Corrosion and oxidation resistance of SmCo magnet
corrosion and oxidation resistance.
* They are brittle, and prone to cracking and chipping. Samarium–cobalt magnets have maximum energy products (BHmax) that range from 14 megagauss-oersteds (MG·Oe) to 33 MG·Oe, that is approx. 112 kJ/m3 to 264 kJ/m3; their theoretical limit is 34 MG·Oe, about 272 kJ/m3. *
Sintered Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, pla ...
samarium-cobalt magnets exhibit magnetic anisotropy, meaning they are typically magnetized along their easy axis, which is the preferred direction for stable magnetization. This is done by aligning the crystal structure of the material during the manufacturing process.


Phases

Samarium–Cobalt magnets are available in two "series", namely SmCo5 magnets and Sm2Co17 magnets.


Phase 1:5

These samarium–cobalt magnet alloys (generally written as SmCo5, or SmCo Series 1:5) have one atom of rare-earth samarium per five atoms of cobalt. By weight, this magnet alloy will typically contain 36% samarium with the balance
cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
. The energy products of these samarium–cobalt alloys range from 16 MG·Oe to 25 MG·Oe, that is, approx. 128–200 kJ/m3. These samarium–cobalt magnets generally have a reversible temperature coefficient of -0.05%/°C. Saturation magnetization can be achieved with a moderate magnetizing field. This series of magnet is easier to calibrate to a specific magnetic field than the SmCo 2:17 series magnets. In the presence of a moderately strong magnetic field, unmagnetized magnets of this series will try to align their orientation axis to the magnetic field, thus becoming slightly magnetized. This can be an issue if postprocessing requires that the magnet be plated or coated. The slight field that the magnet picks up can attract debris during the plating or coating process, causing coating failure or a mechanically out-of-tolerance condition. ''Br'' drifts with temperature and it is one of the important characteristics of magnet performance. Some applications, such as inertial gyroscopes and travelling wave tubes (TWTs), need to have constant field over a wide temperature range. The reversible temperature coefficient (RTC) of ''Br'' is defined as :(∆Br/Br) x (1/∆T) × 100%. To address these requirements, temperature compensated magnets were developed in the late 1970s. For conventional SmCo magnets, ''Br'' decreases as temperature increases. Conversely, for GdCo magnets, ''Br'' increases as temperature increases within certain temperature ranges. By combining samarium and
gadolinium Gadolinium is a chemical element; it has Symbol (chemistry), symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moi ...
in the alloy, the temperature coefficient can be reduced to nearly zero. SmCo5 magnets have a very high
coercivity Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming Magnetization, demagnetized. Coercivity is usual ...
(coercive force); that is, they are not easily demagnetized. They are fabricated by packing wide-grain lone-domain magnetic powders. The crystal system is hexagonal with space group P6/mmm. All of the
magnetic domain A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When c ...
s are aligned with the easy axis direction, which is the one perpendicular to the hexagonal base in the lattice of the crystal. In this case, all of the domain walls are at 180 degrees. When there are no impurities, the reversal process of the bulk magnet is equivalent to lone-domain motes, where coherent rotation is the dominant mechanism. However, due to the imperfection of fabricating, impurities may be introduced in the magnets, which form nuclei. In this case, because the impurities may have lower anisotropy or misaligned easy axes, their directions of magnetization are easier to spin, which breaks the 180° domain wall configuration. In such materials, the coercivity is controlled by nucleation. To obtain much coercivity, impurity control is critical in the fabrication process.


Series 2:17

These alloys (written as Sm2Co17, or SmCo Series 2:17) are age-hardened with a composition of two atoms of rare-earth samarium per 13–17 atoms of transition metals (TM). The arrangement of the atoms is rhombohedral in the space group R-3m. The TM content is rich in cobalt, but contains other elements such as iron and copper. Other elements like
zirconium Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
,
hafnium Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dm ...
, and such may be added in small quantities to achieve better heat treatment response. By weight, the alloy will generally contain 25% of samarium. The maximum energy products of these alloys range from 20 to 32 MGOe, what is about 160-260 kJ/m3. These alloys have the best reversible temperature coefficient of all rare-earth alloys, typically being -0.03%/°C. The "second generation" materials can also be used at higher temperatures. In Sm2Co17 magnets, the coercivity mechanism is based on domain wall pinning. Impurities inside the magnets impede the domain wall motion and thereby resist the magnetization reversal process. To increase the coercivity, impurities are intentionally added during the fabrication process.


Production

Samarium–cobalt alloys are typically machined in the unmagnetized state. Samarium–cobalt should be ground using a wet grinding process (water-based coolants) and a diamond grinding wheel. The same type of process is required if drilling holes or other features that are confined. The grinding waste produced must not be allowed to completely dry as samarium–cobalt has a low ignition point. A small spark, such as that produced with static electricity, can easily initiate combustion.Cobalt HSFS
New Jersey Department of Health and Senior Services Hazardous Substance Fact Sheet.
The resulting fire produced can be extremely hot and difficult to control. The reduction/melt method and reduction/diffusion method are used to manufacture samarium–cobalt magnets. The reduction/melt method will be described since it is used for both SmCo5 and Sm2Co17 production. The raw materials are melted in an induction furnace or arc furnace filled with argon gas. The mixture is cast into a mold and cooled with water to form an ingot. The production of the two phases is not the same, this can be understood by looking at the phase diagram. in fact the 1:5 phase is not stable at room temperature. Typically it is possible to keep the 1:5 phase with a fast quenching after an annealing process. The ingot is pulverized and the particles are further milled to further reduce the particle size. This process is important to because the control of the grain size is fundamental for the control of the coercive field. The resulting powder is pressed in a die of desired shape, in a magnetic field to orient the magnetic field of the particles. Sintering is applied at a temperature of 1100˚C–1250˚C, followed by solution treatment at 1100˚C–1200˚C and tempering is finally performed on the magnet at about 700˚C–900˚C. It then is ground and further magnetized to increase its magnetic properties. The finished product is tested, inspected and packed. Samarium can be substituted by a portion of other rare-earth elements including praseodymium,
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
, and
gadolinium Gadolinium is a chemical element; it has Symbol (chemistry), symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moi ...
, the problem is the effects that this substitutions can have on the Curie temperature and on the coercive field. The cobalt can be substituted with a portion of other
transition metals In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
including
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
,
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
, and
zirconium Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
.Sintered SmCo Magnets
Introduction to Samarium Cobalt Magnets.


Uses

Fender used one of designer Bill Lawrence's Samarium Cobalt Noiseless series of electric guitar pickups in Fender's Vintage Hot Rod '57
Stratocaster The Fender Stratocaster, colloquially known as the Strat, is a model of double- cutaway electric guitar designed between 1952 and 1954 by Leo Fender, Bill Carson, George Fullerton, and Freddie Tavares. The Fender Musical Instruments Corporati ...
. These pickups were used in American Deluxe Series Guitars and Basses from 2004 until early 2010. Samarium-cobalt (SmCo) magnets are used in aerospace and defense due to their exceptional magnetic properties. They are utilized in high-performance motors and
actuators An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system (called an actuating system). The effect is usually produced in a controlled way. ...
, precision sensors and
gyroscopes A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining Orientation (geometry), orientation and angular velocity. It is a spinning wheel or disc in ...
, and satellite systems where stability and reliability are essential. They are also used in medical technologies, including
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and rad ...
machines, pacemakers, and medical pumps. In the mid-1980s some expensive headphones such as the Ross RE-278 used samarium–cobalt "Super Magnet" transducers. Other uses include: * High-end electric motors used in the more competitive classes in slotcar racing *
Turbomachinery Turbomachinery, in mechanical engineering, describes machines that transfer energy between a Rotor (electric), rotor and a fluid, including both turbines and gas compressor, compressors. While a turbine transfers energy from a fluid to a rotor, ...
*
Traveling-wave tube A traveling-wave tube (TWT, pronounced "twit") or traveling-wave tube amplifier (TWTA, pronounced "tweeta") is a specialized vacuum tube that is used in electronics to amplify radio frequency (RF) signals in the microwave range. It was invented ...
field magnets * Applications that will require the system to function at
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
temperatures or very hot temperatures (over 180 °C) * Applications in which performance is required to be consistent with temperature change *
Benchtop NMR spectrometer A countertop, also counter top, counter, benchtop, worktop (British English) or kitchen bench (Australian or New Zealand English), bunker (Scottish English) is a raised, firm, flat, and horizontal surface. They are built for work in kitchens o ...
s * Rotary encoders where it performs the function of magnetic actuator


See also

* * * *


References

{{DEFAULTSORT:Samarium-cobalt magnet Cobalt alloys Ferromagnetic materials Loudspeaker technology Magnetic alloys Samarium compounds