
Doppler spectroscopy (also known as the radial-velocity method, or colloquially, the wobble method) is an
indirect method for finding
extrasolar planets and
brown dwarfs from
radial-velocity measurements via observation of
Doppler shift
The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
s in the
spectrum of the
planet's parent star.
1,018 extrasolar planets (about 19.5% of the total) have been discovered using Doppler spectroscopy, as of November 2022.
History
Otto Struve proposed in 1952 the use of powerful
spectrograph
An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
s to detect distant planets. He described how a very large planet, as large as
Jupiter, for example, would cause its parent star to wobble slightly as the two objects orbit around their center of mass.
[
] He predicted that the small Doppler shifts to the light emitted by the star, caused by its continuously varying radial velocity, would be detectable by the most sensitive spectrographs as tiny
redshift
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
s and
blueshifts in the star's emission. However, the technology of the time produced radial-velocity measurements with errors of 1,000
m/s or more, making them useless for the detection of orbiting planets.
[
] The expected changes in radial velocity are very small – Jupiter causes the
Sun to change velocity by about 12.4 m/s over a period of 12 years, and the Earth's effect is only 0.1 m/s over a period of 1 year – so long-term observations by instruments with a very high
resolution are required.
[
]
Advances in spectrometer technology and observational techniques in the 1980s and 1990s produced instruments capable of detecting the first of many new extrasolar planets. The
ELODIE spectrograph, installed at the
Haute-Provence Observatory
The Haute-Provence Observatory (OHP, french: Observatoire de Haute-Provence) is an astronomical observatory in the southeast of France, about 90 km east of Avignon and 100 km north of Marseille. It was established in 1937 as a national ...
in Southern France in 1993, could measure radial-velocity shifts as low as 7 m/s, low enough for an extraterrestrial observer to detect Jupiter's influence on the Sun.
Using this instrument, astronomers
Michel Mayor and
Didier Queloz identified
51 Pegasi b
51 Pegasi b, officially named Dimidium , and formerly unofficially dubbed Bellerophon , is an extrasolar planet approximately away in the constellation of Pegasus. It was the first exoplanet to be discovered orbiting a main-sequence star, the S ...
, a "
Hot Jupiter" in the constellation Pegasus.
Although planets had previously been detected orbiting
pulsars, 51 Pegasi b was the first planet ever confirmed to be orbiting a
main-sequence star, and the first detected using Doppler spectroscopy.
In November 1995, the scientists published their findings in the journal
''Nature''; the paper has since been cited over 1,000 times. Since that date, over 1,000 exoplanet candidates have been identified, many of which have been detected by Doppler search programs based at the
Keck,
Lick
Lick may refer to:
* Licking, the action of passing the tongue over a surface
Places
* Lick (crater), a crater on the Moon named after James Lick
* 1951 Lick, an asteroid named after James Lick
* Lick Township, Jackson County, Ohio, United State ...
, and
Anglo-Australian Observatories (respectively, the California, Carnegie and Anglo-Australian planet searches), and teams based at the
Geneva Extrasolar Planet Search.
Beginning in the early 2000s, a second generation of planet-hunting spectrographs permitted far more precise measurements. The
HARPS spectrograph, installed at the
La Silla Observatory in Chile in 2003, can identify radial-velocity shifts as small as 0.3 m/s, enough to locate many rocky, Earth-like planets.
A third generation of spectrographs is expected to come online in 2017. With measurement errors estimated below 0.1 m/s, these new instruments would allow an extraterrestrial observer to detect even Earth.
Procedure
A series of observations is made of the spectrum of light emitted by a star. Periodic variations in the star's spectrum may be detected, with the
wavelength of characteristic
spectral lines in the spectrum increasing and decreasing regularly over a period of time. Statistical filters are then applied to the data set to cancel out spectrum effects from other sources. Using mathematical
best-fit techniques, astronomers can isolate the tell-tale periodic
sine wave
A sine wave, sinusoidal wave, or just sinusoid is a curve, mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph of a function, graph. It is a type of continuous wave and also a Smoothness, smooth p ...
that indicates a planet in orbit.
If an extrasolar planet is detected, a
minimum mass for the planet can be determined from the changes in the star's radial velocity. To find a more precise measure of the mass requires knowledge of the inclination of the planet's orbit. A graph of measured radial velocity versus time will give a characteristic curve (
sine curve
A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ma ...
in the case of a circular orbit), and the amplitude of the curve will allow the minimum mass of the planet to be calculated using the
binary mass function.
The Bayesian Kepler periodogram is a mathematical
algorithm, used to detect single or multiple extrasolar planets from successive
radial-velocity measurements of the star they are orbiting. It involves a
Bayesian statistical analysis
Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and e ...
of the radial-velocity data, using a
prior
Prior (or prioress) is an ecclesiastical title for a superior in some religious orders. The word is derived from the Latin for "earlier" or "first". Its earlier generic usage referred to any monastic superior. In abbeys, a prior would be l ...
probability distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
over the space determined by one or more sets of Keplerian orbital parameters. This analysis may be implemented using the
Markov chain Monte Carlo (MCMC) method.
The method has been applied to the
HD 208487
HD 208487 is a 7th-apparent magnitude, magnitude G-type main-sequence star located approximately 144 light-years away in the constellation of Grus (constellation), Grus. It has the same spectral type as the Sun—G2V. However, it is probab ...
system, resulting in an apparent detection of a second planet with a period of approximately 1000 days. However, this may be an artifact of stellar activity. The method is also applied to the
HD 11964
HD 11964 is a binary star system located 110 light-years away from the Sun in the equatorial constellation of Cetus. It is visible in binoculars or a telescope but is too faint to be seen with the naked eye, having an apparent vi ...
system, where it found an apparent planet with a period of approximately 1 year. However, this planet was not found in re-reduced data, suggesting that this detection was an artifact of the Earth's orbital motion around the Sun.
Although radial-velocity of the star only gives a planet's minimum mass, if the planet's
spectral lines can be distinguished from the star's spectral lines then the radial-velocity of the planet itself can be found and this gives the inclination of the planet's orbit and therefore the planet's actual mass can be determined. The first non-transiting planet to have its mass found this way was
Tau Boötis b in 2012 when
carbon monoxide was detected in the infra-red part of the spectrum.
Weighing The Non-Transiting Hot Jupiter Tau BOO b
Florian Rodler, Mercedes Lopez-Morales, Ignasi Ribas, 27 June 2012
Example
The graph to the right illustrates the sine curve
A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ma ...
using Doppler spectroscopy to observe the radial velocity of an imaginary star which is being orbited by a planet in a circular orbit. Observations of a real star would produce a similar graph, although eccentricity in the orbit will distort the curve and complicate the calculations below.
This theoretical star's velocity shows a periodic variance of ±1 m/s, suggesting an orbiting mass that is creating a gravitational pull on this star. Using Kepler's third law of planetary motion
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbit ...
, the observed period of the planet's orbit around the star (equal to the period of the observed variations in the star's spectrum) can be used to determine the planet's distance from the star () using the following equation:
:
where:
*''r'' is the distance of the planet from the star
*''G'' is the gravitational constant
The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
*''M''star is the mass of the star
*''P''star is the observed period of the star
Having determined , the velocity of the planet around the star can be calculated using Newton
Newton most commonly refers to:
* Isaac Newton (1642–1726/1727), English scientist
* Newton (unit), SI unit of force named after Isaac Newton
Newton may also refer to:
Arts and entertainment
* ''Newton'' (film), a 2017 Indian film
* Newton ( ...
's law of gravitation, and the orbit equation:
:
where is the velocity of planet.
The mass of the planet can then be found from the calculated velocity of the planet:
:
where is the velocity of parent star. The observed Doppler velocity, , where ''i'' is the inclination of the planet's orbit to the line perpendicular to the line-of-sight.
Thus, assuming a value for the inclination of the planet's orbit and for the mass of the star, the observed changes in the radial velocity of the star can be used to calculate the mass of the extrasolar planet.
Radial-velocity comparison tables
Ref:
For MK-type stars with planets in the habitable zone
Limitations
The major limitation with Doppler spectroscopy is that it can only measure movement along the line-of-sight, and so depends on a measurement (or estimate) of the inclination of the planet's orbit to determine the planet's mass. If the orbital plane of the planet happens to line up with the line-of-sight of the observer, then the measured variation in the star's radial velocity is the true value. However, if the orbital plane is tilted away from the line-of-sight, then the true effect of the planet on the motion of the star will be greater than the measured variation in the star's radial velocity, which is only the component along the line-of-sight. As a result, the planet's true mass will be greater than measured.
To correct for this effect, and so determine the true mass of an extrasolar planet, radial-velocity measurements can be combined with astrometric observations, which track the movement of the star across the plane of the sky, perpendicular to the line-of-sight. Astrometric measurements allows researchers to check whether objects that appear to be high mass planets are more likely to be brown dwarfs.
A further disadvantage is that the gas envelope around certain types of stars can expand and contract, and some stars are variable. This method is unsuitable for finding planets around these types of stars, as changes in the stellar emission spectrum caused by the intrinsic variability of the star can swamp the small effect caused by a planet.
The method is best at detecting very massive objects close to the parent star – so-called " hot Jupiters" – which have the greatest gravitational effect on the parent star, and so cause the largest changes in its radial velocity. Hot Jupiters have the greatest gravitational effect on their host stars because they have relatively small orbits and large masses. Observation of many separate spectral lines and many orbital periods allows the signal-to-noise ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in deci ...
of observations to be increased, increasing the chance of observing smaller and more distant planets, but planets like the Earth remain undetectable with current instruments.
See also
* Methods of detecting exoplanets
* Systemic (amateur extrasolar planet search project)
References
External links
California and Carnegie Extrasolar Planet Search
The Radial Velocity Equation in the Search for Exoplanets ( The Doppler Spectroscopy or Wobble Method )
{{Exoplanet
Astronomical spectroscopy