Tau Boötis B
Tau Boötis b, or more precisely Tau Boötis Ab, is an extrasolar planet approximately 51 light-years away. The planet and its host star is one of the planetary systems selected by the International Astronomical Union as part of NameExoWorlds, their public process for giving proper names to exoplanets and their host star (where no proper name already exists). The process involved public nomination and voting for the new names, and the IAU planned to announce the new names in mid-December 2015. However, the IAU annulled the vote as the winning name was judged not to conform with the IAU rules for naming exoplanets. Discovery Discovered in 1996, the planet is one of the first extrasolar planets found. It was discovered orbiting the star Tau Boo (HR 5185) by Paul Butler and his team ( San Francisco Planet Search Project) using the highly successful radial velocity method. Since the star is visually bright and the planet is massive, it produces a very strong velocity signal of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of California, Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after the Anglo-Irish philosopher George Berkeley, it is the state's first land-grant university and is the founding campus of the University of California system. Berkeley has an enrollment of more than 45,000 students. The university is organized around fifteen schools of study on the same campus, including the UC Berkeley College of Chemistry, College of Chemistry, the UC Berkeley College of Engineering, College of Engineering, UC Berkeley College of Letters and Science, College of Letters and Science, and the Haas School of Business. It is Carnegie Classification of Institutions of Higher Education, classified among "R1: Doctoral Universities – Very high research activity". Lawrence Berkeley National Laboratory was originally founded as par ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mercury (planet)
Mercury is the first planet from the Sun. It is a rocky planet with a trace atmosphere. While it is the List of Solar System objects by size, smallest and least massive planet of the Solar System, its surface gravity is slightly higher than that of Mars. The surface of Mercury is similar to Earth's Moon, heavily Impact crater, cratered, with expansive rupes system, generated from thrust faults, and bright ray systems, formed by ejecta. Its largest crater, Caloris Planitia, has a diameter of , which is about one-third the diameter of the planet (). Being the most inferior planet, inferior orbiting planet it appears in Earth's sky, always close to the Sun, either as a "morning star" or an "evening star". It stays most of the time the closest to all other planets and is the planet with the highest delta-v needed to travel to from all other planets of the Solar System. Mercury's sidereal year (88.0 Earth days) and sidereal day (58.65 Earth days) are in a 3:2 ratio. This relation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tidal Locking
Tidal locking between a pair of co-orbiting astronomical body, astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked body possesses synchronous rotation, the object takes just as long to rotate around its own axis as it does to revolve around its partner. For example, the same side of the Moon always faces Earth, although there is some libration, variability because the Moon's orbit is not perfectly circular. Usually, only the natural satellite, satellite is tidally locked to the larger body. However, if both the difference in mass between the two bodies and the distance between them are relatively small, each may be tidally locked to the other; this is the case for Pluto and Charon (moon), Charon, and for Eris (dwarf planet), Eris and Dysnomia (moon), Dysnomia. Alternative names for the tidal locking process are gravitational locking, c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andrew Collier Cameron
Andrew Collier Cameron is a British astronomer specialising in the discovery and characterisation of exoplanets. He is a founding co-investigator of the WASP project and served as the head of the School of Physics and Astronomy of the University of St Andrews between 2012 and 2015 where he is currently a professor. Career and research Cameron earned a doctoral degree from the University of Canterbury in 1982, with a thesis on southern hemisphere late-type Ca II emission-line stars. Cameron's research primarily focuses on stellar magnetic fields and the discovery and characterisation of extra-solar planets and cool stars. In his early career, he focused on the rotational history and dynamo-generated magnetic activity of cool stars, ultimately producing micro-arcsecond resolution maps of starspot distributions and surface magnetic fields. With Dr R. D. Robinson he co-discovered the centrifugally supported "slingshot prominence" systems in the coronae of the young, rapidly rota ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HD 209458 B
HD 209458 b is an exoplanet, specifically a hot Jupiter, that orbits the solar analog HD 209458 in the constellation Pegasus, some from the Solar System. The radius of the planet's orbit is , or one-eighth the radius of Mercury's orbit (). This small orbital distance results in a year that is 3.5 Earth-days long and an estimated surface temperature of about . Its mass is 220 times that of Earth (0.69 Jupiter masses) and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant. HD 209458 b represents a number of milestones in exoplanetary research. It was the first of many categories: * a transiting extrasolar planet * The first planet detected through more than one method * an extrasolar planet known to have an atmosphere * an extrasolar planet observed to have an evaporating hydrogen atmosphere * an extrasolar planet found to have an atmosphere containing the elements oxygen and carbon * one of the fir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transit (astronomy)
In astronomy, a transit (or astronomical transit) is the passage of a astronomical object, celestial body directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, eclipse, covering a small portion of it. The word "transit" refers to cases where the nearer object apparent size, appears smaller than the more distant object. Cases where the nearer object appears larger and completely hides the more distant object are known as occultation, ''occultations''. However, the probability of seeing a transiting planet is low because it is dependent on the alignment of the three objects in a nearly perfectly straight line. Many parameters of a planet and its parent star can be determined based on the transit. In the Solar System One type of transit involves the motion of a planet between a Earth, terrestrial observer and the Sun. This can happen only with inferior and superior pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brown Dwarf
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big enough to sustain nuclear fusion of hydrogen into helium in their cores, but massive enough to emit some light and heat from the deuterium fusion, fusion of deuterium (deuterium, 2H). The most massive ones (> ) can lithium burning, fuse lithium (lithium-7, 7Li). Astronomers classify self-luminous objects by Stellar classification#Spectral types, spectral type, a distinction intimately tied to the surface temperature, and brown dwarfs occupy types M (2100–3500 Kelvin, K), L (1300–2100 Kelvin, K), T (600–1300 Kelvin, K), and Y ( 80 ''M''J), which have spectral classes L2 to L6. Spectral class T As GD 165B is the prototype of the L dwarfs, Gliese 229B is the prototype of a second ne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hot Jupiter
Hot Jupiters (sometimes called hot Saturns) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter (i.e. Jupiter analogue, Jupiter analogues) but that have very short orbital periods (). The close proximity to their stars and high surface-atmosphere temperatures resulted in their informal name "hot Jupiters". Hot Jupiters are the easiest extrasolar planets to detect via the radial velocity, radial-velocity method, because the oscillations they induce in their parent stars' motion are relatively large and rapid compared to those of other known types of planets. One of the best-known hot Jupiters is . Discovered in 1995, it was the first extrasolar planet found orbiting a Sun-like star. has an orbital period of about four days. General characteristics Though there is diversity among hot Jupiters, they do share some common properties. * Their defining characteristics are their large masses and short orbital periods, spanning 0.36–11.8 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gas Giant
A gas giant is a giant planet composed mainly of hydrogen and helium. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet". However, in the 1990s, it became known that Uranus and Neptune are a distinct class of giant planets composed mainly of heavier volatile substances (referred to as "Volatile (astrogeology)#Planetary science, ices"). For this reason, Uranus and Neptune are often classified in the separate category of ice giants. Jupiter and Saturn consist mostly of hydrogen and helium, with heavier elements making up between 3 and 13 percent of their mass.The Interior of Jupiter, Guillot et al., in ''Jupiter: The Planet, Satellites and Magnetosphere'', Bagenal et al., editors, Cambridge University Press, 2004 They are thought to have an outer layer of compressed molecular hydrogen surrounding a layer of liquid metallic hydrogen, with a molten rocky core inside. The outermost portion of their hydrogen atmo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kelvin
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By definition, the Celsius scale (symbol °C) and the Kelvin scale have the exact same magnitude; that is, a rise of 1 K is equal to a rise of 1 °C and vice versa, and any temperature in degrees Celsius can be converted to kelvin by adding 273.15. The 19th century British scientist Lord Kelvin first developed and proposed the scale. It was often called the "absolute Celsius" scale in the early 20th century. The kelvin was formally added to the International System of Units in 1954, defining 273.16 K to be the triple point of water. The Celsius, Fahrenheit, and Rankine scales were redefined in terms of the Kelvin scale using this definition. The 2019 revision of the SI now defines the kelvin in terms of energy by setting the Bo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bond Albedo
The Bond albedo (also called spheric albedo, planetary albedo, and bolometric albedo), named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic radiation incident on an astronomical body that is scattered back out into space. Because the Bond albedo accounts for all of the light scattered from a body at all wavelengths and all phase angles, it is a necessary quantity for determining how much energy a body absorbs. This, in turn, is crucial for determining the equilibrium temperature of a body. Because bodies in the outer Solar System are always observed at very low phase angles from the Earth, the only reliable data for measuring their Bond albedo comes from spacecraft. Phase integral The Bond albedo (''A'') is related to the geometric albedo (''p'') by the expression :A = pq where ''q'' is termed the ''phase integral'' and is given in terms of the directional scattered flux '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |