
In
materials science
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries.
The intellectual origins of materials sci ...
, radiation-absorbent material (RAM) is a material which has been specially designed and shaped to
absorb incident RF radiation (also known as
non-ionising radiation), as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of
reflected RF radiation. Many measurements in
electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing
measurement errors and ambiguities.
Introduction

One of the most effective types of RAM comprises arrays of
pyramid
A pyramid () is a structure whose visible surfaces are triangular in broad outline and converge toward the top, making the appearance roughly a pyramid in the geometric sense. The base of a pyramid can be of any polygon shape, such as trian ...
-shaped pieces, each of which is constructed from a suitably
lossy material. To work effectively, all internal surfaces of the anechoic chamber must be entirely covered with RAM. Sections of RAM may be temporarily removed to install equipment but they must be replaced before performing any tests. To be sufficiently lossy, RAM can be neither a good
electrical conductor
In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
nor a good
electrical insulator
An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and electrical conductor, conductors—con ...
as neither type actually absorbs any power. Typically pyramidal RAM will comprise a
rubber
Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds.
Types of polyisoprene ...
ized
foam material impregnated with controlled mixtures of
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
. The length from base to tip of the pyramid structure is chosen based on the lowest expected frequency and the amount of absorption required. For low frequency damping, this distance is often , while high-frequency panels are as short as . Panels of RAM are typically installed on the walls of an
EMC test chamber with the tips pointing inward to the chamber. Pyramidal RAM attenuates signal by two effects: scattering and absorption. Scattering can occur both coherently, when reflected waves are in-phase but directed away from the receiver, or incoherently where waves are picked up by the receiver but are out of phase and thus have lower signal strength. This incoherent scattering also occurs within the foam structure, with the suspended carbon particles promoting destructive interference. Internal scattering can result in as much as 10 dB of attenuation. Meanwhile, the pyramid shapes are cut at angles that maximize the number of bounces a wave makes within the structure. With each bounce, the wave loses energy to the foam material and thus exits with lower signal strength.
An alternative type of RAM comprises flat plates of
ferrite material, in the form of flat
tile
Tiles are usually thin, square or rectangular coverings manufactured from hard-wearing material such as ceramic, Rock (geology), stone, metal, baked clay, or even glass. They are generally fixed in place in an array to cover roofs, floors, wal ...
s fixed to all interior surfaces of the chamber. This type has a smaller effective frequency range than the pyramidal RAM and is designed to be fixed to good conductive surfaces. It is generally easier to fit and more durable than the pyramidal type RAM but is less effective at higher frequencies. Its performance might however be quite adequate if tests are limited to lower frequencies (ferrite plates have a damping curve that makes them most effective between 30–1000 MHz). There is also a hybrid type, a ferrite in pyramidal shape. Containing the advantages of both technologies, the frequency range can be maximized while the pyramid remains small, about .
For physically-realizable radiation-absorbent materials, there is a trade-off between thickness and bandwidth: optimal thickness to bandwidth ratio of a radiation-absorbent material is given by the Rozanov limit.
Use in stealth technology
Radar-absorbent materials are used in
stealth technology
Stealth technology, also termed low observable technology (LO technology), is a sub-discipline of military tactics and passive and active electronic countermeasures. The term covers a range of military technology, methods used to make personnel ...
to disguise a vehicle or structure from
radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
detection. A material's absorbency at a given frequency of radar wave depends upon its composition. RAM cannot perfectly absorb radar at any frequency, but any given composition does have greater absorbency at some frequencies than others; no one RAM is suited to absorption of all radar frequencies. A common misunderstanding is that RAM makes an object invisible to radar. A radar-absorbent material can significantly reduce an object's
radar cross-section in specific radar frequencies, but it does not result in "invisibility" on any frequency.
History
The earliest forms of stealth coating were radar absorbing paints developed by Major K. Mano of the Tama Technical Institute, and Dr. Shiba of the Tokyo Engineering College for the IJAAF. Multiple paint mixtures were tested with ferric oxide and liquid rubber, as well as ferric oxide, asphalt and airplane dope having the best results. Despite success in laboratory tests, the paints saw little practical application as they were heavy and would significantly impact the performance of any aircraft they were applied to.
Conversely the IJN saw great potential in anti-radar materials and the Second Naval Technical Institute began research on layered materials to absorb radar waves rather than paint. Rubber and plastic with carbon powder with varying ratios were layered to absorb and disperse radar waves. The results were promising against 3 GHz (
S band) frequencies, but poor against 3 cm wave length (10 GHz,
X band) radar. Work on the program was halted due to allied bombing raids, but research was continued post war by the Americans to mild success.
In September of 1944, materials called ''Sumpf'' and ''Schornsteinfeger'', coatings used by the German navy during
World War II
World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
for the
snorkels (or
periscopes) of
submarine
A submarine (often shortened to sub) is a watercraft capable of independent operation underwater. (It differs from a submersible, which has more limited underwater capability.) The term "submarine" is also sometimes used historically or infor ...
s, to lower their reflectivity in the 20 cm radar band (1.5 GHz,
L band) the Allies used. The material had a layered structure and was based on
graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
particles and other
semiconductive materials embedded in a
rubber
Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds.
Types of polyisoprene ...
matrix. The material's efficiency was partially reduced by the action of sea water.
A related use was planned for the
Horten Ho 229 aircraft. The adhesive which bonded plywood sheets in its skin was impregnated with graphite particles which were intended to reduce its visibility to Britain's radar.
Types of radar-absorbent material (RAM)
Iron ball paint absorber

One of the most commonly known types of RAM is iron ball paint. It contains tiny spheres coated with
carbonyl iron or
ferrite.
Radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
waves induce molecular oscillations from the alternating magnetic field in this paint, which leads to conversion of the radar energy into heat. The heat is then transferred to the aircraft and dissipated. The iron particles in the paint are obtained by
decomposition
Decomposition is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is ess ...
of
iron pentacarbonyl and may contain traces of
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
,
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, and
nitrogen
Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
. One technique used in the
F-117A Nighthawk and other such stealth aircraft is to use electrically isolated carbonyl iron balls of specific dimensions suspended in a two-part epoxy paint. Each of these microscopic spheres is coated in
silicon dioxide
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundan ...
as an insulator through a proprietary process. Then, during the panel fabrication process, while the paint is still liquid, a magnetic field is applied with a specific Gauss strength and at a specific distance to create magnetic field patterns in the carbonyl iron balls within the liquid paint
ferrofluid. The paint then hardens with the magnetic field holding the particles in their magnetic pattern. Some experimentation has been done applying opposing north–south magnetic fields to opposing sides of the painted panels, causing the carbonyl iron particles to align (standing up on end so they are three-dimensionally parallel to the magnetic field). The carbonyl iron ball paint is most effective when the balls are evenly dispersed, electrically isolated, and present a gradient of progressively greater density to the incoming radar waves. A related type of RAM consists of
neoprene polymer sheets with ferrite grains or conductive
carbon black particles (containing about 0.30% of crystalline
graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
by cured weight) embedded in the polymer matrix. The tiles were used on early versions of the F-117A Nighthawk, although more recent models use painted RAM. The painting of the F-117 is done by industrial robots so the paint can be applied consistently in specific layer thicknesses and densities. The plane is covered in tiles "glued" to the fuselage and the remaining gaps are filled with iron ball "glue." The
United States Air Force
The United States Air Force (USAF) is the Air force, air service branch of the United States Department of Defense. It is one of the six United States Armed Forces and one of the eight uniformed services of the United States. Tracing its ori ...
introduced a radar-absorbent paint made from both
ferrofluidic and nonmagnetic substances. By reducing the reflection of electromagnetic waves, this material helps to reduce the visibility of RAM-painted aircraft on radar. The Israeli firm
Nanoflight has also made a radar-absorbing paint that uses
nanoparticle
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s. The
Republic of China (Taiwan)'s military
A military, also known collectively as armed forces, is a heavily armed, highly organized force primarily intended for warfare. Militaries are typically authorized and maintained by a sovereign state, with their members identifiable by a d ...
has also successfully developed radar-absorbing paint which is currently used on Taiwanese stealth warships and the Taiwanese-built stealth jet fighter which is currently in development in response to the development of stealth technology by their rival, the mainland
People's Republic of China
China, officially the People's Republic of China (PRC), is a country in East Asia. With population of China, a population exceeding 1.4 billion, it is the list of countries by population (United Nations), second-most populous country after ...
which is known to have displayed both stealth warships and planes to the public.
Foam absorber
Foam absorber is used as lining of
anechoic chamber
An anechoic chamber (''an-echoic'' meaning "non-reflective" or "without echoes") is a room designed to stop reflection (physics), reflections or Echo (phenomenon), echoes of either sound or electromagnetic waves. They are also often isolate ...
s for electromagnetic radiation measurements. This material typically consists of a fireproofed urethane foam loaded with conductive carbon black
arbonyl iron spherical particles, and/or crystalline graphite particlesin mixtures between 0.05% and 0.1% (by weight in finished product), and cut into square pyramids with dimensions set specific to the wavelengths of interest. Further improvements can be made when the conductive particulates are layered in a density gradient, so the tip of the pyramid has the lowest percentage of particles and the base contains the highest density of particles. This presents a "soft" impedance change to incoming radar waves and further reduces reflection (echo). The length from base to tip, and width of the base of the pyramid structure is chosen based on the lowest expected frequency when a wide-band absorber is sought. For low-frequency damping in military applications, this distance is often , while high-frequency panels are as short as . An example of a high-frequency application would be the police radar (speed-measuring radar K and Ka band), the pyramids would have a dimension around long and a base. That pyramid would set on a 5 cm x 5 cm cubical base that is high (total height of pyramid and base of about ). The four edges of the pyramid are softly sweeping arcs giving the pyramid a slightly "bloated" look. This arc provides some additional scatter and prevents any sharp edge from creating a coherent reflection. Panels of RAM are installed with the tips of the pyramids pointing toward the radar source. These pyramids may also be hidden behind an outer nearly radar-transparent shell where aerodynamics are required. Pyramidal RAM attenuates signal by scattering and absorption. Scattering can occur both coherently, when reflected waves are in-phase but directed away from the receiver, or incoherently where waves may be reflected back to the receiver but are out of phase and thus have lower signal strength. A good example of coherent reflection is in the faceted shape of the F-117A stealth aircraft which presents angles to the radar source such that coherent waves are reflected away from the point of origin (usually the detection source). Incoherent scattering also occurs within the foam structure, with the suspended conductive particles promoting destructive interference. Internal scattering can result in as much as 10 dB of attenuation. Meanwhile, the pyramid shapes are cut at angles that maximize the number of bounces a wave makes within the structure. With each bounce, the wave loses energy to the foam material and thus exits with lower signal strength. Other foam absorbers are available in flat sheets, using an increasing gradient of carbon loadings in different layers. Absorption within the foam material occurs when radar energy is converted to heat in the conductive particle. Therefore, in applications where high radar energies are involved, cooling fans are used to exhaust the heat generated.
Jaumann absorber
A Jaumann absorber or Jaumann layer is a radar-absorbent substance. When first introduced in 1943, the Jaumann layer consisted of two equally spaced reflective surfaces and a conductive ground plane. One can think of it as a generalized, multilayered
Salisbury screen, as the principles are similar. Being a resonant absorber (i.e. it uses wave interfering to cancel the reflected wave), the Jaumann layer is dependent upon the λ/4 spacing between the first reflective surface and the ground plane and between the two reflective surfaces (a total of λ/4 + λ/4 ). Because the wave can resonate at two frequencies, the Jaumann layer produces two absorption maxima across a band of wavelengths (if using the two layers configuration). These absorbers must have all of the layers parallel to each other and the ground plane that they conceal. More elaborate Jaumann absorbers use series of
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
surfaces that separate conductive sheets. The conductivity of those sheets increases with proximity to the ground plane.
Split-ring resonator absorber
Split-ring resonators (SRRs) in various test configurations have been shown to be extremely effective as radar absorbers. SRR technology can be used in conjunction with the technologies above to provide a cumulative absorption effect. SRR technology is particularly effective when used on faceted shapes that have perfectly flat surfaces that present no direct reflections back to the radar source (such as the F-117A). This technology uses photographic process to create a resist layer on a thin (about ) copper foil on a dielectric backing (thin circuit board material) etched into tuned resonator arrays, each individual resonator being in a "C" shape (or other shape—such as a square). Each SRR is electrically isolated and all dimensions are carefully specified to optimize absorption at a specific radar wavelength. Not being a closed loop "O", the opening in the "C" presents a gap of specific dimension which acts as a capacitor. At 35 GHz, the diameter of the "C" is near . The resonator can be tuned to specific wavelengths and multiple SRRs can be stacked with insulating layers of specific thicknesses between them to provide a wide-band absorption of radar energy. When stacked, the smaller SRRs (high-frequency) in the range face the radar source first (like a stack of donuts that get progressively larger as one moves away from the radar source) stacks of three have been shown to be effective in providing wide-band attenuation. SRR technology acts very much in the same way that antireflective coatings operate at optical wavelengths. SRR technology provides the most effective radar attenuation of any technologies known previously and is one step closer to reaching complete invisibility (total stealth, "cloaking"). Work is also progressing in visual wavelengths, as well as infrared wavelengths (LIDAR-absorbing materials).
Carbon nanotube
Radars work in the microwave frequency range, which can be absorbed by multi-wall nanotubes (MWNTs). Applying the MWNTs to the aircraft would cause the radar to be absorbed and therefore seem to have a smaller
radar cross-section. One such application could be to paint the nanotubes onto the plane. Recently there has been some work done at the
University of Michigan
The University of Michigan (U-M, U of M, or Michigan) is a public university, public research university in Ann Arbor, Michigan, United States. Founded in 1817, it is the oldest institution of higher education in the state. The University of Mi ...
regarding carbon nanotubes usefulness as
stealth technology
Stealth technology, also termed low observable technology (LO technology), is a sub-discipline of military tactics and passive and active electronic countermeasures. The term covers a range of military technology, methods used to make personnel ...
on aircraft. It has been found that in addition to the radar absorbing properties, the nanotubes neither reflect nor scatter visible light, making it essentially invisible at night, much like painting current
stealth aircraft
Stealth aircraft are designed to avoid detection using a variety of technologies that reduce reflection/emission of radar, infrared, visible light, radio frequency (RF) spectrum, and audio, collectively known as stealth technology. The F-117 Ni ...
black except much more effective. Current limitations in manufacturing, however, mean that current production of nanotube-coated aircraft is not possible. One theory to overcome these current limitations is to cover small particles with the nanotubes and suspend the nanotube-covered particles in a medium such as paint, which can then be applied to a surface, like a stealth aircraft.
[Bourzac, Katherine]
"Nano Paint Could Make Airplanes Invisible to Radar."
Technology Review. MIT, 5 December 2011.
See also
*
Lidar
Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
*
Radar cross-section (RCS)
*
Stealth technology
Stealth technology, also termed low observable technology (LO technology), is a sub-discipline of military tactics and passive and active electronic countermeasures. The term covers a range of military technology, methods used to make personnel ...
*
Radar jamming and deception
References
Notes
Bibliography
The Schornsteinfeger Project CIOS Report XXVI-24.
External links
*
*
Suppliers of Radar absorbent materials
{{DEFAULTSORT:Radiation-absorbent material
Electromagnetic compatibility
Radar
Military technology
Materials