RGBD Camera
   HOME

TheInfoList



OR:

Range imaging is the name for a collection of techniques that are used to produce a 2D image showing the distance to points in a scene from a specific point, normally associated with some type of sensor device. The resulting range image has pixel values that correspond to the distance. If the sensor that is used to produce the range image is properly calibrated the pixel values can be given directly in physical units, such as meters.


Types of range cameras

The sensor device that is used for producing the range image is sometimes referred to as a ''range camera'' or ''depth camera''. Range cameras can operate according to a number of different techniques, some of which are presented here.


Stereo triangulation

Stereo triangulation is an application of
stereophotogrammetry Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant ima ...
where the depth data of the pixels are determined from data acquired using a
stereo Stereophonic sound, commonly shortened to stereo, is a method of sound reproduction that recreates a multi-directional, 3-dimensional audible perspective. This is usually achieved by using two independent audio channels through a configurat ...
or
multiple-camera setup The multiple-camera setup, multiple-camera mode of production, multi-camera or simply multicam is a method of filmmaking, television production and video production. Several cameras—either film cameras, film or professional video cameras—are ...
system. This way it is possible to determine the depth to points in the scene, for example, from the center point of the line between their focal points. In order to solve the depth measurement problem using a stereo camera system it is necessary to first find corresponding points in the different images. Solving the
correspondence problem The correspondence problem refers to the problem of ascertaining which parts of one image correspond to which parts of another image, where differences are due to movement of the camera, the elapse of time, and/or movement of objects in the photo ...
is one of the main problems when using this type of technique. For instance, it is difficult to solve the correspondence problem for image points that lie inside regions of homogeneous intensity or color. As a consequence, range imaging based on stereo triangulation can usually produce reliable depth estimates only for a subset of all points visible in the multiple cameras. The advantage of this technique is that the measurement is more or less passive; it does not require special conditions in terms of scene illumination. The other techniques mentioned here do not have to solve the correspondence problem but are instead dependent on particular scene illumination conditions.


Sheet of light triangulation

If the scene is illuminated with a sheet of light this creates a reflected line as seen from the light source. From any point out of the plane of the sheet the line will typically appear as a curve, the exact shape of which depends both on the distance between the observer and the light source, and the distance between the light source and the reflected points. By observing the reflected sheet of light using a camera (often a high resolution camera) and knowing the positions and orientations of both camera and light source, it is possible to determine the distances between the reflected points and the light source or camera. By moving either the light source (and normally also the camera) or the scene in front of the camera, a sequence of depth profiles of the scene can be generated. These can be represented as a 2D range image.


Structured light

By illuminating the scene with a specially designed light pattern, ''
structured light upright=1.3, A structured light pattern projected onto a surface (left) Structured light is a method that measures the shape and depth of a three-dimensional object by projecting a pattern of light onto the object's surface. The pattern can be ...
'', depth can be determined using only a single image of the reflected light. The structured light can be in the form of horizontal and vertical lines, points or checker board patterns. A light stage is basically a generic structured light range imaging device originally created for the job of reflectance capture.


Time-of-flight

The depth can also be measured using the standard time-of-flight (ToF) technique, more or less like a
radar Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
, in that a range image similar to a radar image is produced, except that a light pulse is used instead of an RF pulse. It is also not unlike a
LIDAR Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
, except that ToF is scannerless, i.e., the entire scene is captured with a single light pulse, as opposed to point-by-point with a rotating laser beam. Time-of-flight cameras are relatively new devices that capture a whole scene in three dimensions with a dedicated image sensor, and therefore have no need for moving parts. A time-of-flight laser radar with a fast gating intensified CCD camera achieves sub-millimeter depth resolution. With this technique a short laser pulse illuminates a scene, and the intensified CCD camera opens its high speed shutter only for a few hundred
picosecond A picosecond (abbreviated as ps) is a unit of time in the International System of Units (SI) equal to 10−12 or (one trillionth) of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000  ...
s. The 3D information is calculated from a 2D image series that was gathered with increasing delay between the laser pulse and the shutter opening.


Interferometry

By illuminating points with
coherent light Coherence expresses the potential for two waves to Wave interference, interfere. Two Monochromatic radiation, monochromatic beams from a single source always interfere. Wave sources are not strictly monochromatic: they may be ''partly coherent''. ...
and measuring the phase shift of the reflected light relative to the light source it is possible to determine depth. Under the assumption that the true range image is a more or less continuous function of the image coordinates, the correct depth can be obtained using a technique called phase-unwrapping. See terrestrial SAR interferometry.


Coded aperture

Depth information may be partially or wholly inferred alongside intensity through reverse convolution of an image captured with a specially designed coded aperture pattern with a specific complex arrangement of holes through which the incoming light is either allowed through or blocked. The complex shape of the aperture creates a non-uniform blurring of the image for those parts of the scene not at the focal plane of the lens. The extent of blurring across the scene, which is related to the displacement from the focal plane, may be used to infer the depth. In order to identify the size of the blur (needed to decode depth information) in the captured image, two approaches can be used: 1) deblurring the captured image with different blurs, or 2) learning some linear filters that identify the type of blur. The first approach uses correct mathematical deconvolution that takes account of the known aperture design pattern; this deconvolution can identify where and by what degree the scene has become convoluted by out of focus light selectively falling on the capture surface, and reverse the process. Thus the blur-free scene may be retrieved together with the size of the blur. The second approach, instead, extracts the extent of the blur bypassing the recovery of the blur-free image, and therefore without performing reverse convolution. Using a
principal component analysis Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that th ...
(PCA) based technique, the method learns off-line a bank of filters that uniquely identify each size of blur; these filters are then applied directly to the captured image, as a normal convolution. The most important advantage of this approach is that no information about the coded aperture pattern is required. Because of its efficiency, this algorithm has also been extended to video sequences with moving and deformable objects. Since the depth for a point is inferred from its extent of blurring caused by the light spreading from the corresponding point in the scene arriving across the entire surface of the aperture and distorting according to this spread, this is a complex form of stereo triangulation. Each point in the image is effectively spatially sampled across the width of the aperture. This technology has lately been used in the
iPhone X The iPhone X (Roman numerals, Roman numeral "X" pronounced "ten") is a smartphone that was developed and marketed by Apple Inc. It is part of the List of iPhone models, 11th generation of the iPhone. Available for pre-order from September 26, 2 ...
. Many other phones from
Samsung Samsung Group (; stylised as SΛMSUNG) is a South Korean Multinational corporation, multinational manufacturing Conglomerate (company), conglomerate headquartered in the Samsung Town office complex in Seoul. The group consists of numerous a ...
and
computers A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations ('' computation''). Modern digital electronic computers can perform generic sets of operations known as ''programs'', ...
from
Microsoft Microsoft Corporation is an American multinational corporation and technology company, technology conglomerate headquartered in Redmond, Washington. Founded in 1975, the company became influential in the History of personal computers#The ear ...
have tried to use this technology but they do not use the 3D mapping.


See also

*
3D scanner 3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance (e.g. color). The collected data can then be used to construct digital 3D models. A 3D scanner ...
*
Depth map In 3D computer graphics and computer vision, a depth map is an Digital image, image or Channel (digital image), image channel that contains information relating to the distance of the Computer representation of surfaces, surfaces of scene objec ...
* Intensified CCD camera *
Kinect Kinect is a discontinued line of motion sensing input devices produced by Microsoft and first released in 2010. The devices generally contain RGB color model, RGB cameras, and Thermographic camera, infrared projectors and detectors that map dep ...
*
Laser Dynamic Range Imager The Laser Dynamic Range Imager (LDRI) is a LIDAR range imaging device developed by Sandia National Laboratories for the US Space Shuttle program. The sensor was developed as part of NASA's "Return to Flight" effort following the Space Shuttle Colu ...
*
Laser rangefinder A laser rangefinder, also known as a laser telemeter or laser distance meter, is a rangefinder that uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by ...
*
Lidar Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
*
Light-field camera A light field camera, also known as a plenoptic camera, is a camera that captures information about the ''light field'' emanating from a scene; that is, the intensity of light in a scene, and also the precise direction that the light rays are tr ...
(plenoptic camera) *
Optical flow Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene. Optical flow can also be defined as the distribution of apparent velocit ...
technique developed for the Matrix franchise provides an effective solution to the
correspondence problem The correspondence problem refers to the problem of ascertaining which parts of one image correspond to which parts of another image, where differences are due to movement of the camera, the elapse of time, and/or movement of objects in the photo ...
to enable
virtual cinematography Virtual cinematography is the set of Cinematography, cinematographic techniques performed in a computer graphics environment. It includes a wide variety of subjects like photographing real objects, often with Stereo camera, stereo or multi-camer ...
. *
Photogrammetry Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant ima ...
*
Structure from motion Structure from motion (SfM) is a photogrammetric range imaging technique for estimating three-dimensional structures from two-dimensional image sequences that may be coupled with local motion signals. It is a classic problem studied in the fiel ...
*
Time-of-flight camera A time-of-flight camera (ToF camera), also known as time-of-flight sensor (ToF sensor), is a range imaging camera system for measuring distances between the camera and the subject for each point of the image based on time-of-flight, the round ...


References

* * *{{cite book , author=David A. Forsyth and Jean Ponce , title=Computer Vision, A Modern Approach , publisher=Prentice Hall , year=2003 , isbn=0-12-379777-2 Image sensor technology in computer vision Cameras 3D imaging