HOME

TheInfoList



OR:

In physics, quasiparticles and collective excitations are closely related
emergent phenomena In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with other electrons and with
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
. The electron behaves as though it has a different effective mass travelling unperturbed in vacuum. Such an electron is called an ''electron quasiparticle''. In another example, the aggregate motion of electrons in the valence band of a semiconductor or a hole band in a metal behave as though the material instead contained positively charged quasiparticles called '' electron holes''. Other quasiparticles or collective excitations include the ''
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
'', a quasiparticle derived from the vibrations of atoms in a solid, and the '' plasmons'', a particle derived from plasma oscillation. These phenomena are typically called ''quasiparticles'' if they are related to
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s, and called ''collective excitations'' if they are related to bosons, although the precise distinction is not universally agreed upon. ''A guide to Feynman diagrams in the many-body problem'', by Richard D. Mattuck, p10
"As we have seen, the quasiparticle consists of the original real, individual particle, plus a cloud of disturbed neighbors. It behaves very much like an individual particle, except that it has an effective mass and a lifetime. But there also exist other kinds of fictitious particles in many-body systems, i.e. 'collective excitations'. These do not center around individual particles, but instead involve collective, wavelike motion of ''all'' the particles in the system simultaneously."
Thus, electrons and electron holes (fermions) are typically called ''quasiparticles'', while phonons and plasmons (bosons) are typically called ''collective excitations''. The quasiparticle concept is important in
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
because it can simplify the many-body problem in quantum mechanics. The theory of quasiparticles was started by the Soviet physicist Lev Landau in the 1930s.


Overview


General introduction

Solids are made of only three kinds of particles: electrons,
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s, and neutrons. Quasiparticles are none of these; instead, each of them is an '' emergent phenomenon'' that occurs inside the solid. Therefore, while it is quite possible to have a single particle (electron or proton or neutron) floating in space, a quasiparticle can only exist inside interacting many-particle systems (primarily solids). Motion in a solid is extremely complicated: Each electron and proton is pushed and pulled (by Coulomb's law) by all the other electrons and protons in the solid (which may themselves be in motion). It is these strong interactions that make it very difficult to predict and understand the behavior of solids (see many-body problem). On the other hand, the motion of a ''non-interacting'' classical particle is relatively simple; it would move in a straight line at constant velocity. This is the motivation for the concept of quasiparticles: The complicated motion of the ''real'' particles in a solid can be mathematically transformed into the much simpler motion of imagined quasiparticles, which behave more like non-interacting particles. In summary, quasiparticles are a mathematical tool for simplifying the description of solids.


Relation to many-body quantum mechanics

The principal motivation for quasiparticles is that it is almost impossible to ''directly'' describe every particle in a macroscopic system. For example, a barely-visible (0.1mm) grain of sand contains around 1017 nuclei and 1018 electrons. Each of these attracts or repels every other by Coulomb's law. In principle, the Schrödinger equation predicts exactly how this system will behave. But the Schrödinger equation in this case is a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
(PDE) on a 3×1018-dimensional vector space—one dimension for each coordinate (x,y,z) of each particle. Directly and straightforwardly trying to solve such a PDE is impossible in practice. Solving a PDE on a 2-dimensional space is typically much harder than solving a PDE on a 1-dimensional space (whether analytically or numerically); solving a PDE on a 3-dimensional space is significantly harder still; and thus solving a PDE on a 3×1018-dimensional space is quite impossible by straightforward methods. One simplifying factor is that the system as a whole, like any quantum system, has a
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
and various
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to a ...
s with higher and higher energy above the ground state. In many contexts, only the "low-lying" excited states, with energy reasonably close to the ground state, are relevant. This occurs because of the Boltzmann distribution, which implies that very-high-energy thermal fluctuations are unlikely to occur at any given temperature. Quasiparticles and collective excitations are a type of low-lying excited state. For example, a crystal at
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
is in the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
, but if one
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
is added to the crystal (in other words, if the crystal is made to vibrate slightly at a particular frequency) then the crystal is now in a low-lying excited state. The single phonon is called an ''elementary excitation''. More generally, low-lying excited states may contain any number of elementary excitations (for example, many phonons, along with other quasiparticles and collective excitations). When the material is characterized as having "several elementary excitations", this statement presupposes that the different excitations can be combined. In other words, it presupposes that the excitations can coexist simultaneously and independently. This is never ''exactly'' true. For example, a solid with two identical phonons does not have exactly twice the excitation energy of a solid with just one phonon, because the crystal vibration is slightly
anharmonic In classical mechanics, anharmonicity is the deviation of a system from being a harmonic oscillator. An oscillator that is not oscillating in harmonic motion is known as an anharmonic oscillator where the system can be approximated to a ha ...
. However, in many materials, the elementary excitations are very ''close'' to being independent. Therefore, as a ''starting point'', they are treated as free, independent entities, and then corrections are included via interactions between the elementary excitations, such as "phonon-phonon
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
". Therefore, using quasiparticles / collective excitations, instead of analyzing 1018 particles, one needs to deal with only a handful of somewhat-independent elementary excitations. It is, therefore, a very effective approach to simplify the many-body problem in quantum mechanics. This approach is not useful for ''all'' systems, however: In
strongly correlated material Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion ...
s, the elementary excitations are so far from being independent that it is not even useful as a starting point to treat them as independent.


Distinction between quasiparticles and collective excitations

Usually, an elementary excitation is called a "quasiparticle" if it is a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
and a "collective excitation" if it is a boson. However, the precise distinction is not universally agreed upon. There is a difference in the way that quasiparticles and collective excitations are intuitively envisioned. A quasiparticle is usually thought of as being like a dressed particle: it is built around a real particle at its "core", but the behavior of the particle is affected by the environment. A standard example is the "electron quasiparticle": an electron in a crystal behaves as if it had an effective mass which differs from its real mass. On the other hand, a collective excitation is usually imagined to be a reflection of the aggregate behavior of the system, with no single real particle at its "core". A standard example is the
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
, which characterizes the vibrational motion of every atom in the crystal. However, these two visualizations leave some ambiguity. For example, a magnon in a ferromagnet can be considered in one of two perfectly equivalent ways: (a) as a mobile defect (a misdirected spin) in a perfect alignment of magnetic moments or (b) as a quantum of a collective spin wave that involves the precession of many spins. In the first case, the magnon is envisioned as a quasiparticle, in the second case, as a collective excitation. However, both (a) and (b) are equivalent and correct descriptions. As this example shows, the intuitive distinction between a quasiparticle and a collective excitation is not particularly important or fundamental. The problems arising from the collective nature of quasiparticles have also been discussed within the philosophy of science, notably in relation to the identity conditions of quasiparticles and whether they should be considered "real" by the standards of, for example, entity realism.


Effect on bulk properties

By investigating the properties of individual quasiparticles, it is possible to obtain a great deal of information about low-energy systems, including the
flow properties In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and ...
and heat capacity. In the heat capacity example, a crystal can store energy by forming
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s, and/or forming
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
s, and/or forming plasmons, etc. Each of these is a separate contribution to the overall heat capacity.


History

The idea of quasiparticles originated in Lev Landau's theory of Fermi liquids, which was originally invented for studying liquid
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron (the most common isotope, helium-4, having two protons and two neutrons in contrast). Other than protium (ordinary hydrogen), helium-3 is the ...
. For these systems a strong similarity exists between the notion of quasiparticle and dressed particles in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
. The dynamics of Landau's theory is defined by a kinetic equation of the mean-field type. A similar equation, the Vlasov equation, is valid for a
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
in the so-called
plasma approximation Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood plas ...
. In the plasma approximation, charged particles are considered to be moving in the electromagnetic field collectively generated by all other particles, and hard collisions between the charged particles are neglected. When a kinetic equation of the mean-field type is a valid first-order description of a system, second-order corrections determine the entropy production, and generally take the form of a Boltzmann-type collision term, in which figure only "far collisions" between virtual particles. In other words, every type of mean-field kinetic equation, and in fact every mean-field theory, involves a quasiparticle concept.


Examples of quasiparticles and collective excitations

This section contains examples of quasiparticles and collective excitations. The first subsection below contains common ones that occur in a wide variety of materials under ordinary conditions; the second subsection contains examples that arise only in special contexts.


More common examples

*In solids, an electron quasiparticle is an electron as affected by the other forces and interactions in the solid. The electron quasiparticle has the same charge and
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
as a "normal" ( elementary particle) electron, and like a normal electron, it is a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
. However, its mass can differ substantially from that of a normal electron; see the article effective mass. Its electric field is also modified, as a result of electric field screening. In many other respects, especially in metals under ordinary conditions, these so-called Landau quasiparticles closely resemble familiar electrons; as Crommie's " quantum corral" showed, an STM can clearly image their interference upon scattering. *A hole is a quasiparticle consisting of the lack of an electron in a state; it is most commonly used in the context of empty states in the valence band of a semiconductor. A hole has the opposite charge of an electron. *A
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
is a collective excitation associated with the vibration of atoms in a rigid crystal structure. It is a
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
of a
sound wave In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the ...
. *A magnon is a collective excitation associated with the electrons' spin structure in a crystal lattice. It is a quantum of a spin wave. *In materials, a photon quasiparticle is a photon as affected by its interactions with the material. In particular, the photon quasiparticle has a modified relation between wavelength and energy ( dispersion relation), as described by the material's
index of refraction In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
. It may also be termed a polariton, especially near a resonance of the material. For example, an exciton-polariton is a superposition of an exciton and a photon; a phonon-polariton is a superposition of a phonon and a photon. *A plasmon is a collective excitation, which is the quantum of plasma oscillations (wherein all the electrons simultaneously oscillate with respect to all the ions). *A polaron is a quasiparticle which comes about when an electron interacts with the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
of its surrounding ions. *An
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
is an electron and hole bound together. *A plasmariton is a coupled optical phonon and dressed photon consisting of a plasmon and photon.


More specialized examples

*A roton is a collective excitation associated with the rotation of a fluid (often a superfluid). It is a quantum of a vortex. *
Composite fermion A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions we ...
s arise in a two-dimensional system subject to a large magnetic field, most famously those systems that exhibit the fractional quantum Hall effect. These quasiparticles are quite unlike normal particles in two ways. First, their charge can be less than the electron charge ''e''. In fact, they have been observed with charges of e/3, e/4, e/5, and e/7. Second, they can be
anyon In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchangi ...
s, an exotic type of particle that is neither a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
nor boson. *
Stoner excitation Stoner or stoners may refer to: People * Stoner (bass guitarist) * Alyson Stoner (born 1993), American actress and dancer * Andrew Stoner (born 1960), Australian politician, member of the New South Wales Legislative Assembly, and the Leader of th ...
s in ferromagnetic metals * Bogoliubov quasiparticles in superconductors.
Superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
is carried by Cooper pairs—usually described as pairs of electrons—that move through the crystal lattice without resistance. A broken Cooper pair is called a Bogoliubov quasiparticle. It differs from the conventional quasiparticle in metal because it combines the properties of a negatively charged electron and a positively charged hole (an electron void). Physical objects like impurity atoms, from which quasiparticles scatter in an ordinary metal, only weakly affect the energy of a Cooper pair in a conventional superconductor. In conventional superconductors, interference between Bogoliubov quasiparticles is tough for an STM to see. Because of their complex global electronic structures, however, high-Tc cuprate superconductors are another matter. Thus Davis and his colleagues were able to resolve distinctive patterns of quasiparticle interference in Bi-2212. *A
Majorana fermion A Majorana fermion (, uploaded 19 April 2013, retrieved 5 October 2014; and also based on the pronunciation of physicist's name.), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Et ...
is a particle which equals its own antiparticle, and can emerge as a quasiparticle in certain superconductors, or in a quantum spin liquid. * Magnetic monopoles arise in condensed matter systems such as spin ice and carry an effective magnetic charge as well as being endowed with other typical quasiparticle properties such as an effective mass. They may be formed through spin flips in frustrated pyrochlore ferromagnets and interact through a Coulomb potential. * Skyrmions and Hopfions * Spinon is represented by quasiparticle produced as a result of electron spin-charge separation, and can form both quantum spin liquid and strongly correlated quantum spin liquid in some minerals like Herbertsmithite. *Angulons can be used to describe the rotation of molecules in solvents. First postulated theoretically in 2015, the existence of the angulon was confirmed in February 2017, after a series of experiments spanning 20 years. Heavy and light species of molecules were found to rotate inside
superfluid helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. Its ...
droplets, in good agreement with the angulon theory. * Type-II Weyl fermions break Lorentz symmetry, the foundation of the special theory of relativity, which cannot be broken by real particles. *A dislon is a quantized field associated with the quantization of the lattice displacement field of a
crystal dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
. It is a quantum of vibration and static strain field of a dislocation line.


See also

* Fractionalization * List of quasiparticles * Mean-field theory * Pseudoparticle *
Composite fermion A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions we ...
* Composite boson


References


Further reading

*
L. D. Landau Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His ...
, ''Soviet Phys. JETP.'' 3:920 (1957) *L. D. Landau, ''Soviet Phys. JETP.'' 5:101 (1957) *A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, ''Methods of Quantum Field Theory in Statistical Physics'' (1963, 1975). Prentice-Hall, New Jersey; Dover Publications, New York. *D. Pines, and P. Nozières, ''The Theory of Quantum Liquids'' (1966). W.A. Benjamin, New York. ''Volume I: Normal Fermi Liquids'' (1999). Westview Press, Boulder. *J. W. Negele, and H. Orland, ''Quantum Many-Particle Systems'' (1998). Westview Press, Boulder


External links


PhysOrg.com
– Scientists find new 'quasiparticles'
Curious 'quasiparticles' baffle physicists
by Jacqui Hayes, Cosmos 6 June 2008. Accessed June 2008 {{Authority control Physical phenomena Condensed matter physics Quantum phases Mesoscopic physics Emergence