Proton Foundation
   HOME

TheInfoList



OR:

A proton is a stable
subatomic particle In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, lik ...
, symbol , H+, or 1H+ with a positive
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
of +1 ''e'' (
elementary charge The elementary charge, usually denoted by , is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 ''e'') or, equivalently, the magnitude of the negative electric charge carried by a single electron, ...
). Its mass is slightly less than the mass of a
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
and approximately times the mass of an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
(the
proton-to-electron mass ratio In physics, the proton-to-electron mass ratio (symbol ''μ'' or ''β'') is the rest mass of the proton (a baryon found in atoms) divided by that of the electron (a lepton found in atoms), a dimensionless quantity, namely: :''μ'' = The number in ...
). Protons and neutrons, each with a mass of approximately one dalton, are jointly referred to as ''
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
s'' (particles present in atomic nuclei). One or more protons are present in the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
of every
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
(represented by the symbol ''Z''). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element. The word ''proton'' is
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
for "first", and the name was given to the hydrogen nucleus by
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
in 1920. In previous years, Rutherford had discovered that the
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
nucleus (known to be the lightest nucleus) could be extracted from the nuclei of
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
by atomic collisions. Protons were therefore a candidate to be a fundamental or
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
, and hence a building block of nitrogen and all other heavier atomic nuclei. Although protons were originally considered to be elementary particles, in the modern
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, protons are known to be composite particles, containing three
valence quark In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies Flavour (particle physics), ...
s, and together with
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s are now classified as
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s. Protons are composed of two
up quark The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quark ...
s of charge +''e'' each, and one
down quark The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most ...
of charge −''e''. The
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
es of quarks contribute only about 1% of a proton's mass. The remainder of a proton's mass is due to
quantum chromodynamics binding energy In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
, which includes the
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
of the quarks and the energy of the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
fields that bind the quarks together. The proton charge radius is around but two different kinds of measurements give slightly different values.N Baryons
S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024) and 2025 update
At sufficiently low temperatures and kinetic energies, free protons will bind
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s in any matter they traverse. Free protons are routinely used for accelerators for
proton therapy In medicine, proton therapy, or proton radiotherapy, is a type of particle therapy that uses a beam of protons to irradiate diseased tissue, most often to treat cancer. The chief advantage of proton therapy over other types of external beam ...
or various particle physics experiments, with the most powerful example being the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, ...
.


Description

Protons are spin-
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s and are composed of three valence quarks, making them
baryon In particle physics, a baryon is a type of composite particle, composite subatomic particle that contains an odd number of valence quarks, conventionally three. proton, Protons and neutron, neutrons are examples of baryons; because baryons are ...
s (a sub-type of
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s). The two
up quark The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quark ...
s and one
down quark The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most ...
of a proton are held together by the
strong force In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, an ...
, mediated by
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s. A modern perspective has a proton composed of the valence quarks (up, up, down), the gluons, and transitory pairs of
sea quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s. Protons have a positive charge distribution, which decays approximately exponentially, with a root mean square
charge radius The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = . It can be measured by the scattering of electrons by the nucleus. Relative changes in the m ...
of about 0.8 fm. Protons and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s are both
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
s, which may be bound together by the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both ...
to form
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
. The nucleus of the most common
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
of the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
(with the
chemical symbol Chemical symbols are the abbreviations used in chemistry, mainly for chemical elements; but also for functional groups, chemical compounds, and other entities. Element symbols for chemical elements, also known as atomic symbols, normally consist ...
"H") is a lone proton. The nuclei of the heavy hydrogen isotopes
deuterium Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
and
tritium Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons.


History

The concept of a hydrogen-like particle as a constituent of other atoms was developed over a long period. As early as 1815,
William Prout William Prout Fellow of the Royal Society, FRS (; 15 January 1785 – 9 April 1850) was an English chemist, physician, and natural theologian. He is remembered today mainly for what is called Prout's hypothesis. Biography Prout was born in H ...
proposed that all atoms are composed of hydrogen atoms (which he called "protyles"), based on a simplistic interpretation of early values of
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
s (see
Prout's hypothesis Prout's hypothesis was an early 19th-century attempt to explain the existence of the various chemical elements through a hypothesis regarding the internal structure of the atom. In 1815 and 1816, the English chemist William Prout published two ...
), which was disproved when more accurate values were measured. In 1886,
Eugen Goldstein Eugen Goldstein (; ; 5 September 1850 – 25 December 1930) was a German physicist. He was an early investigator of discharge tubes, and the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including th ...
discovered
canal rays An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. La ...
(also known as anode rays) and showed that they were positively charged particles (ions) produced from gases. However, since particles from different gases had different values of
charge-to-mass ratio The mass-to-charge ratio (''m''/''Q'') is a physical quantity relating the ''mass'' (quantity of matter) and the ''electric charge'' of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrody ...
(''q''/''m''), they could not be identified with a single particle, unlike the negative
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s discovered by
J. J. Thomson Sir Joseph John Thomson (18 December 1856 – 30 August 1940) was an English physicist who received the Nobel Prize in Physics in 1906 "in recognition of the great merits of his theoretical and experimental investigations on the conduction of ...
.
Wilhelm Wien Wilhelm Carl Werner Otto Fritz Franz Wien (; 13 January 1864 – 30 August 1928) was a German physicist who used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any te ...
in 1898 identified the hydrogen ion as the particle with the highest charge-to-mass ratio in ionized gases. Following the discovery of the atomic nucleus by
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
in 1911,
Antonius van den Broek Antonius Johannes van den Broek (4 May 1870 – 25 October 1926) was a Dutch mathematical economist and amateur physicist, notable for being the first who realized that the position of an element in the periodic table (now called atomic number) c ...
proposed that the place of each element in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
(its atomic number) is equal to its nuclear charge. This was confirmed experimentally by
Henry Moseley Henry Gwyn Jeffreys Moseley (; 23 November 1887 – 10 August 1915) was an English physicist, whose contribution to the science of physics was the justification from physical laws of the previous empirical and chemical concept of the atomic numb ...
in 1913 using X-ray spectra (More details in
Atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
under Moseley's 1913 experiment). In 1919, after a long series of sporadic experiments interrupted by WWI, Rutherford discovered what he called artificial disintegration of
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
atoms. Using
alpha particles Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
from
radium Radium is a chemical element; it has chemical symbol, symbol Ra and atomic number 88. It is the sixth element in alkaline earth metal, group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, ...
to strike air, Rutherford detected scintillation on a
zinc sulfide Zinc sulfide (or zinc sulphide) is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various i ...
screen at a distance, up to 28cm, well beyond the distance of alpha-particle range of travel but instead corresponding to the range of travel of hydrogen atoms. By 1920 he concluded that these hydrogen nuclei were a constituent part of the nitrogen nucleus. These hydrogen nuclei were soon called ''protons''. This result is described as the discovery of protons. Rutherford initially assumed that the alpha particle merely knocked a proton out of nitrogen, turning it into carbon.
Patrick Blackett Patrick Maynard Stuart Blackett, Baron Blackett (18 November 1897 – 13 July 1974) was an English physicist who received the 1948 Nobel Prize in Physics. In 1925, he was the first person to prove that radioactivity could cause the nuclear tr ...
's cloud chamber images in 1925 demonstrated that the alpha particle was absorbed. If the alpha particle were not absorbed, then 3 charged particles, a negatively charged carbon, a proton, and an alpha particle, would be expected. The 3 charged particles would create three tracks in the cloud chamber, but only 2 tracks in the cloud chamber were observed. Blackett proposed that the alpha particle is absorbed by the nitrogen atom. Heavy oxygen (17O), not carbon, was the product. This was the first reported
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
, . Rutherford knew hydrogen to be the simplest and lightest element and was influenced by
Prout's hypothesis Prout's hypothesis was an early 19th-century attempt to explain the existence of the various chemical elements through a hypothesis regarding the internal structure of the atom. In 1815 and 1816, the English chemist William Prout published two ...
that hydrogen was the building block of all elements. Discovery that the hydrogen nucleus is present in other nuclei as an elementary particle led Rutherford to give the hydrogen nucleus a special name as a particle, since he suspected that hydrogen, the lightest element, contained only one of these particles. He named this new fundamental building block of the nucleus the ''proton'', after the neuter singular of the Greek word for "first", . However, Rutherford also had in mind the word ''protyle'' as used by Prout. Rutherford spoke at the
British Association for the Advancement of Science The British Science Association (BSA) is a Charitable organization, charity and learned society founded in 1831 to aid in the promotion and development of science. Until 2009 it was known as the British Association for the Advancement of Scienc ...
at its
Cardiff Cardiff (; ) is the capital city, capital and List of urban areas in the United Kingdom, largest city of Wales. Cardiff had a population of in and forms a Principal areas of Wales, principal area officially known as the City and County of Ca ...
meeting beginning 24 August 1920. At the meeting, he was asked by
Oliver Lodge Sir Oliver Joseph Lodge (12 June 1851 – 22 August 1940) was an English physicist whose investigations into electromagnetic radiation contributed to the development of Radio, radio communication. He identified electromagnetic radiation indepe ...
for a new name for the positive hydrogen nucleus to avoid confusion with the neutral hydrogen atom. He initially suggested both ''proton'' and ''prouton'' (after Prout). Rutherford later reported that the meeting had accepted his suggestion that the hydrogen nucleus be named the "proton", following Prout's word "protyle". The first use of the word "proton" in the scientific literature appeared in 1920.


Occurrence

One or more bound protons are present in the nucleus of every atom. Free protons are found naturally in a number of situations in which energies or temperatures are high enough to separate them from electrons, for which they have some affinity. Free protons occur occasionally on Earth:
thunderstorm A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustics, acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorm ...
s can produce protons with energies of up to several tens of
MeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
. Free protons exist in plasmas in which temperatures are too high to allow them to combine with
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s. Free protons of high energy and velocity make up 90% of
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s, which propagate through the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
. Free protons are emitted directly from
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
in some rare types of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Protons also result (along with electrons and
antineutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it ...
s) from the radioactive decay of free neutrons, which are unstable.


Stability

The spontaneous decay of free protons has never been observed, and protons are therefore considered stable particles according to the Standard Model. However, some
grand unified theories A Grand Unified Theory (GUT) is any model in particle physics that merges the electromagnetic, weak, and strong forces (the three gauge interactions of the Standard Model) into a single force at high energies. Although this unified force has ...
(GUTs) of particle physics predict that
proton decay In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov ...
should take place with lifetimes between 1031 and 1036 years. Experimental searches have established lower bounds on the
mean lifetime A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and ( lambda) is a positive ra ...
of a proton for various assumed decay products. Experiments at the
Super-Kamiokande Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ) is a neutrino detector, neutrino observatory located Kamioka Observatory, under Mount Ikeno near the city of Hida, Gifu, Hida, ...
detector in Japan gave lower limits for proton
mean lifetime A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and ( lambda) is a positive ra ...
of for decay to an
antimuon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a l ...
and a neutral
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
, and for decay to a
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
and a neutral pion. Another experiment at the
Sudbury Neutrino Observatory The Sudbury Neutrino Observatory (SNO) was a neutrino observatory located 2100 m underground in Vale's Creighton Mine in Sudbury, Ontario, Canada. The detector was designed to detect solar neutrinos through their interactions with a larg ...
in Canada searched for
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s resulting from residual nuclei resulting from the decay of a proton from oxygen-16. This experiment was designed to detect decay to any product, and established a lower limit to a proton lifetime of . However, protons are known to transform into
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s through the process of
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
(also called
inverse beta decay In nuclear and particle physics, inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detect ...
). For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is: : + → + The process is reversible; neutrons can convert back to protons through
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
, a common form of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. In fact, a
free neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the f ...
decays this way, with a
mean lifetime A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and ( lambda) is a positive ra ...
of about 15 minutes. A proton can also transform into a neutron through beta plus decay (β+ decay). According to
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, the mean proper lifetime of protons \tau_\mathrm becomes finite when they are accelerating with
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
a, and \tau_\mathrm decreases with increasing a. Acceleration gives rise to a non-vanishing probability for the transition . This was a matter of concern in the later 1990s because \tau_\mathrm is a scalar that can be measured by the inertial and coaccelerated observers. In the
inertial frame In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
, the accelerating proton should decay according to the formula above. However, according to the coaccelerated observer the proton is at rest and hence should not decay. This puzzle is solved by realizing that in the coaccelerated frame there is a thermal bath due to Fulling–Davies–Unruh effect, an intrinsic effect of quantum field theory. In this thermal bath, experienced by the proton, there are electrons and antineutrinos with which the proton may interact according to the processes: # , # and # . Adding the contributions of each of these processes, one should obtain \tau_\mathrm.


Quarks and the mass of a proton

In
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, the modern theory of the nuclear force, most of the mass of protons and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s is explained by
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
. The mass of a proton is about 80–100 times greater than the sum of the rest masses of its three valence
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s, while the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s have zero rest mass. The extra energy of the
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s and
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s in a proton, as compared to the rest energy of the quarks alone in the
QCD vacuum The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a ''non-perturbative'' vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the compl ...
, accounts for almost 99% of the proton's mass. The rest mass of a proton is, thus, the
invariant mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
of the system of moving quarks and gluons that make up the particle, and, in such systems, even the energy of massless particles confined to a system is still measured as part of the rest mass of the system. Two terms are used in referring to the mass of the quarks that make up protons: ''
current quark Current quarks (also called naked quarks or bare quarks) are a description of valence quarks as the cores of the quark particles that are the invariable parts of a hadron: their non-virtual ("real" or permanent) quarks with their surrounding "cov ...
mass'' refers to the mass of a quark by itself, while ''
constituent quark A constituent quark is a current quark with a notional "covering" induced by the renormalization group. In the low-energy limit of QCD, a description by means of perturbation theory is not possible: Here, no asymptotic freedom exists, but collec ...
mass'' refers to the current quark mass plus the mass of the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
particle field surrounding the quark. These masses typically have very different values. The kinetic energy of the quarks that is a consequence of confinement is a contribution (see ''
Mass in special relativity The word "mass" has two meanings in special relativity: ''invariant mass'' (also called rest mass) is an invariant quantity which is the same for all Observer (special relativity), observers in all reference frames, while the relativistic mass i ...
''). Using
lattice QCD Lattice QCD is a well-established non- perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
calculations, the contributions to the mass of the proton are the quark condensate (~9%, comprising the up and down quarks and a sea of virtual strange quarks), the quark kinetic energy (~32%), the gluon kinetic energy (~37%), and the anomalous gluonic contribution (~23%, comprising contributions from condensates of all quark flavors). The constituent quark model wavefunction for the proton is \mathrm. The internal dynamics of protons are complicated, because they are determined by the quarks' exchanging gluons, and interacting with various vacuum condensates.
Lattice QCD Lattice QCD is a well-established non- perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
provides a way of calculating the mass of a proton directly from the theory to any accuracy, in principle. The most recent calculations claim that the mass is determined to better than 4% accuracy, even to 1% accuracy (see Figure S5 in Dürr ''et al.''). These claims are still controversial, because the calculations cannot yet be done with quarks as light as they are in the real world. This means that the predictions are found by a process of
extrapolation In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. ...
, which can introduce systematic errors. It is hard to tell whether these errors are controlled properly, because the quantities that are compared to experiment are the masses of the
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s, which are known in advance. These recent calculations are performed by massive supercomputers, and, as noted by Boffi and Pasquini: "a detailed description of the nucleon structure is still missing because ... long-distance behavior requires a nonperturbative and/or numerical treatment ..." More conceptual approaches to the structure of protons are: the topological soliton approach originally due to Tony Skyrme and the more accurate AdS/QCD approach that extends it to include a
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
of gluons, various QCD-inspired models like the bag model and the
constituent quark A constituent quark is a current quark with a notional "covering" induced by the renormalization group. In the low-energy limit of QCD, a description by means of perturbation theory is not possible: Here, no asymptotic freedom exists, but collec ...
model, which were popular in the 1980s, and the SVZ sum rules, which allow for rough approximate mass calculations. These methods do not have the same accuracy as the more brute-force lattice QCD methods, at least not yet.


Charge radius

The
CODATA The Committee on Data of the International Science Council (CODATA) was established in 1966 as the Committee on Data for Science and Technology, originally part of the International Council of Scientific Unions, now part of the International ...
recommended value of a proton's
charge radius The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = . It can be measured by the scattering of electrons by the nucleus. Relative changes in the m ...
is The radius of the proton measured by electron–proton scattering differs from the value measured via the
Lamb shift In physics, the Lamb shift, named after Willis Lamb, is an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which pre ...
in muonic hydrogen (an
exotic atom An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic a ...
made of a proton and a negatively charged
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
). As a muon is 200 times heavier than an electron, resulting in a smaller
atomic orbital In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
, it is much more sensitive to the proton's charge radius and thus allows a more precise measurement. Subsequent improved scattering and electron-spectroscopy measurements agree with the new small radius. Work continues to refine and check this new value. A third kind of high precision measurement agrees most closely with the value given by the muonic hydrogen spectroscopy but unexplained differences remain. The exact nature of what these measurement mean has also been questioned.


Pressure inside the proton

Since the proton is composed of quarks confined by gluons, an equivalent
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
that acts on the quarks can be defined. The size of that pressure and other details about it are controversial. In 2018 this pressure was reported to be on the order 1035 Pa, which is greater than the pressure inside a
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
. It was said to be maximum at the centre, positive (repulsive) to a radial distance of about 0.6 fm, negative (attractive) at greater distances, and very weak beyond about 2 fm. These numbers were derived by a combination of a theoretical model and experimental
Compton scattering Compton scattering (or the Compton effect) is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound e ...
of high-energy electrons. However, these results have been challenged as also being consistent with zero pressure and as effectively providing the pressure profile shape by selection of the model.


Charge radius in solvated proton, hydronium

The radius of the hydrated proton appears in the
Born equation The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of method ...
for calculating the hydration enthalpy of
hydronium In chemistry, hydronium (hydroxonium in traditional British English) is the cation , also written as , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved ...
.


Interaction of free protons with ordinary matter

Although protons have affinity for oppositely charged electrons, this is a relatively low-energy interaction and so free protons must lose sufficient velocity (and
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
) in order to become closely associated and bound to electrons. High energy protons, in traversing ordinary matter, lose energy by collisions with
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
, and by
ionization Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
of atoms (removing electrons) until they are slowed sufficiently to be captured by the
electron cloud In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calc ...
in a normal atom. However, in such an association with an electron, the character of the bound proton is not changed, and it remains a proton. The attraction of low-energy free protons to any electrons present in normal matter (such as the electrons in normal atoms) causes free protons to stop and to form a new chemical bond with an atom. Such a bond happens at any sufficiently "cold" temperature (that is, comparable to temperatures at the surface of the Sun) and with any type of atom. Thus, in interaction with any type of normal (non-plasma) matter, low-velocity free protons do not remain free but are attracted to electrons in any atom or molecule with which they come into contact, causing the proton and molecule to combine. Such molecules are then said to be " protonated", and chemically they are simply compounds of hydrogen, often positively charged. Often, as a result, they become so-called Brønsted acids. For example, a proton captured by a water molecule in water becomes
hydronium In chemistry, hydronium (hydroxonium in traditional British English) is the cation , also written as , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved ...
, the
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in wat ...
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
.


Proton in chemistry


Atomic number

In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, the number of protons in the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
of an atom is known as the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
, which determines the
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
to which the atom belongs. For example, the atomic number of
chlorine Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
is 17; this means that each chlorine atom has 17 protons and that all atoms with 17 protons are chlorine atoms. The chemical properties of each atom are determined by the number of (negatively charged)
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, which for neutral atoms is equal to the number of (positive) protons so that the total charge is zero. For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s, and energy levels may differ, resulting in different
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have Half-life, half-lives of ...
s. For example, there are two stable
isotopes of chlorine Chlorine (17Cl) has 25 isotopes, ranging from 28Cl to 52Cl, and two isomers, 34mCl and 38mCl. There are two stable isotopes, 35Cl (75.8%) and 37Cl (24.2%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope ...
: with 35 − 17 = 18 neutrons and with 37 − 17 = 20 neutrons.


Hydrogen ion

In chemistry, the term ''proton'' refers to the hydrogen ion, . Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to a bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope ''protium'' ). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom, and so is extremely reactive chemically. The free proton, thus, has an extremely short lifetime in chemical systems such as liquids and it reacts immediately with the
electron cloud In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calc ...
of any available molecule. In aqueous solution, it forms the
hydronium ion In chemistry, hydronium (hydroxonium in traditional British English) is the cation , also written as , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved in ...
, H3O+, which in turn is further solvated by water molecules in
clusters may refer to: Science and technology Astronomy * Cluster (spacecraft), constellation of four European Space Agency spacecraft * Cluster II (spacecraft), a European Space Agency mission to study the magnetosphere * Asteroid cluster, a small ...
such as 5O2sup>+ and 9O4sup>+. The transfer of in an
acid–base reaction In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms an ...
is usually referred to as "proton transfer". The
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
is referred to as a proton donor and the base as a proton acceptor. Likewise,
biochemical Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, ...
terms such as ''
proton pump A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction: : n one side of a biological membrane/sub> + energy n the other side of the m ...
'' and ''
proton channel A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction: : n one side of a biological membrane/sub> + energy n the other side of the mem ...
'' refer to the movement of hydrated ions. The ion produced by removing the electron from a
deuterium Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
atom is known as a ''deuteron'', not a proton. Likewise, removing an electron from a
tritium Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
atom produces a ''triton''.


Proton nuclear magnetic resonance (NMR)

Also in chemistry, the term ''
proton NMR Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the stru ...
'' refers to the observation of hydrogen-1 nuclei in (mostly organic) molecules by
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
. This method uses the quantized
spin magnetic moment Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic ...
of the proton, which is due to its angular momentum (or
spin Spin or spinning most often refers to: * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin quantum number, a number which defines the value of a particle's spin * Spinning (textiles), the creation of yarn or thr ...
), which in turn has a magnitude of one-half the reduced
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
. (\hbar/2). The name refers to examination of protons as they occur in
protium Hydrogen (H) has three naturally occurring isotopes: H, H, and H. H and H are stable, while H has a half-life of years. Heavier isotopes also exist; all are synthetic and have a half-life of less than 1 zeptosecond (10 s). Of these, H is ...
(hydrogen-1 atoms) in compounds, and does not imply that free protons exist in the compound being studied.


Human exposure

The
Apollo Lunar Surface Experiments Package The Apollo Lunar Surface Experiments Package (ALSEP) comprised a set of scientific instruments placed by the astronauts at the landing site of each of the five Apollo program, Apollo missions to land on the Moon following Apollo 11 (Apollos Apol ...
s (ALSEP) determined that more than 95% of the particles in the
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
are electrons and protons, in approximately equal numbers. Protons also have extrasolar origin from galactic
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s, where they make up about 90% of the total particle flux. These protons often have higher energy than solar wind protons, and their intensity is far more uniform and less variable than protons coming from the Sun, the production of which is heavily affected by solar proton events such as
coronal mass ejection A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understandin ...
s. Research has been performed on the dose-rate effects of protons, as typically found in space travel, on human health. To be more specific, there are hopes to identify what specific chromosomes are damaged, and to define the damage, during
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
development from proton exposure. Another study looks into determining "the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including
dopaminergic Dopaminergic means "related to dopamine" (literally, "working on dopamine"), a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain. Dopaminergic pathways, Dopaminergic brain pathways facil ...
functioning,
amphetamine Amphetamine (contracted from Alpha and beta carbon, alpha-methylphenethylamine, methylphenethylamine) is a central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, an ...
-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Electrical charging of a spacecraft due to interplanetary proton bombardment has also been proposed for study. There are many more studies that pertain to space travel, including
galactic cosmic rays Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar ...
and their possible health effects, and solar proton event exposure. The American Biostack and Soviet Biorack space travel experiments have demonstrated the severity of molecular damage induced by heavy ions on
microorganism A microorganism, or microbe, is an organism of microscopic scale, microscopic size, which may exist in its unicellular organism, single-celled form or as a Colony (biology)#Microbial colonies, colony of cells. The possible existence of unseen ...
s including
Artemia ''Artemia'' is a genus of aquatic crustaceans also known as brine shrimp or '' sea monkeys''. It is the only genus in the family Artemiidae. The first historical record of the existence of ''Artemia'' dates back to the first half of the 10th cent ...
cysts.


Antiproton

CPT-symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T ...
puts strong constraints on the relative properties of particles and
antiparticle In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
s and, therefore, is open to stringent tests. For example, the charges of a proton and antiproton must sum to exactly zero. This equality has been tested to one part in . The equality of their masses has also been tested to better than one part in . By holding antiprotons in a
Penning trap A Penning trap is a device for the storage of charged particles using a homogeneous magnetic field and a quadrupole electric field. It is mostly found in the physical sciences and related fields of study for precision measurements of properties o ...
, the equality of the charge-to-mass ratio of protons and antiprotons has been tested to one part in . The
magnetic moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
of antiprotons has been measured with an error of nuclear
Bohr magneton In atomic physics, the Bohr magneton (symbol ) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum. In SI units, the Bohr magneton is defined as \mu_\mat ...
s, and is found to be equal and opposite to that of a proton.


See also

*
Fermionic field In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of ...
*
Hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
*
Hydron (chemistry) In chemistry, the hydron, informally called proton, is the cationic form of atomic hydrogen, represented with the symbol . The general term "hydron", endorsed by IUPAC, encompasses cations of hydrogen regardless of isotope: thus it refers colle ...
*
List of particles This is a list of known and hypothesized microscopic particles in particle physics, condensed matter physics and cosmology. Standard Model elementary particles Elementary particles are particles with no measurable internal structure; that is, ...
*
Proton–proton chain The proton–proton chain, also commonly referred to as the chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun, wherea ...
*
Quark model In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eig ...
* Proton spin crisis *
Proton therapy In medicine, proton therapy, or proton radiotherapy, is a type of particle therapy that uses a beam of protons to irradiate diseased tissue, most often to treat cancer. The chief advantage of proton therapy over other types of external beam ...


References


Further reading

* *


External links

*
Particle Data Group
at LBL
Large Hadron Collider
* * MIT proton visualization project: *
Inside the Proton, the ‘Most Complicated Thing You Could Possibly Imagine’
Quanta Magazine ''Quanta Magazine'' is an editorially independent online publication of the Simons Foundation covering developments in physics, mathematics, biology and computer science. History ''Quanta Magazine'' was initially launched as ''Simons Science ...
, Oct 19 2022 *
Visualizing the Proton
Arts at MIT, 2022 {{Authority control Baryons Cations Nucleons Hydrogen physics 1910s in science