HOME

TheInfoList



OR:

Protein methods are the techniques used to study
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. There are experimental methods for studying proteins (e.g., for detecting proteins, for isolating and purifying proteins, and for characterizing the structure and function of proteins, often requiring that the protein first be purified). Computational methods typically use computer programs to analyze proteins. However, many experimental methods (e.g.,
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
) require computational analysis of the raw data.


Genetic methods

Experimental analysis of proteins typically requires expression and purification of proteins. Expression is achieved by manipulating DNA that encodes the protein(s) of interest. Hence, protein analysis usually requires DNA methods, especially
cloning Cloning is the process of producing individual organisms with identical genomes, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction; this reproduction of an organism by itself without ...
. Some examples of genetic methods include conceptual translation,
Site-directed mutagenesis Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenes ...
, using a
fusion protein Fusion proteins or chimeric (kī-ˈmir-ik) proteins (literally, made of parts from different sources) are proteins created through the joining of two or more genes that originally coded for separate proteins. Translation of this '' fusion gene'' ...
, and matching allele with disease states. Some proteins have never been directly sequenced, however by translating
codons Genetic code is a set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome, which links pro ...
from known mRNA sequences into
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
by a method known as conceptual translation. (See
genetic code Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
.)
Site-directed mutagenesis Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenes ...
selectively introduces mutations that change the structure of a protein. The function of parts of proteins can be better understood by studying the change in
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological propert ...
as a result of this change. Fusion proteins are made by inserting protein tags, such as the
His-tag A polyhistidine-tag, best known by the trademarked name His-tag, is an amino acid motif in proteins that typically consists of at least six histidine (''His'') residues, often at the N- or C-terminus of the protein. It is also known as a hexa hi ...
, to produce a modified protein that is easier to track. An example of this would be GFP-Snf2H which consists of a protein bound to a
green fluorescent protein The green fluorescent protein (GFP) is a protein that exhibits green fluorescence when exposed to light in the blue to ultraviolet range. The label ''GFP'' traditionally refers to the protein first isolated from the jellyfish ''Aequorea victo ...
to form a hybrid protein. By analyzing DNA
allele An allele is a variant of the sequence of nucleotides at a particular location, or Locus (genetics), locus, on a DNA molecule. Alleles can differ at a single position through Single-nucleotide polymorphism, single nucleotide polymorphisms (SNP), ...
s can be identified as being associated with disease states, such as in calculation of LOD scores.


Protein extraction from tissues

Protein extraction from tissues with tough extracellular matrices (e.g., biopsy samples, venous tissues, cartilage, skin) is often achieved in a laboratory setting by impact pulverization in liquid nitrogen. Samples are frozen in liquid nitrogen and subsequently subjected to impact or mechanical grinding. As water in the samples becomes very brittle at these temperature, the samples are often reduced to a collection of fine fragments, which can then be dissolved for protein extraction. Stainless steel devices known as tissue pulverizers are sometimes used for this purpose. Advantages of these devices include high levels of protein extraction from small, valuable samples, disadvantages include low-level cross-over contamination.


Protein purification

Protein purification is a critical process in molecular biology and biochemistry, aimed at isolating a specific protein from a complex mixture, such as cell lysates or tissue extracts. The goal is to obtain the protein in a pure form that retains its biological activity for further study, including functional assays, structural analysis, or therapeutic applications. The purification process typically involves several steps, including cell lysis, protein extraction, and a combination of chromatographic and electrophoretic techniques.


Protein isolation

Protein isolation refers to the extraction of proteins from biological samples, which can include tissues, cells, or other materials. The process often begins with cell lysis, where the cellular membranes are disrupted to release proteins into a solution. This can be achieved through physical methods (e.g., sonication, homogenization) or chemical methods (e.g., detergents, enzymes). Following lysis, the mixture is usually clarified by centrifugation to remove cell debris and insoluble material, allowing soluble proteins to be collected for further purification.


Chromatography methods

Chromatography is a widely used technique for protein purification, allowing for the separation of proteins based on various properties, including charge, size, and binding affinity. Here are the main types of chromatography used in protein purification:


Ion Exchange Chromatography

Ion exchange chromatography separates proteins based on their net charge at a given pH. The stationary phase consists of charged resin beads that interact with oppositely charged proteins. As the sample passes through the column, proteins bind to the resin while unbound proteins are washed away. By gradually changing the ionic strength or pH of the elution buffer, bound proteins can be released in a controlled manner, allowing for effective separation.


Size-Exclusion Chromatography (Gel Filtration)

Size-exclusion chromatography separates proteins based on their size. The stationary phase is composed of porous beads that allow smaller molecules to enter the pores while larger molecules pass around them. As a result, larger proteins elute first, followed by smaller ones. This method is particularly useful for desalting or removing small contaminants from protein samples.


Affinity Chromatography

Affinity chromatography exploits the specific interactions between proteins and their ligands. A target protein is captured on a column containing a ligand that specifically binds to it, such as an antibody, enzyme substrate, or metal ion. After washing away non-specifically bound proteins, the target protein is eluted using a solution that disrupts the protein-ligand interaction. This method provides high specificity and is often used for purifying recombinant proteins that have affinity tags.


Protein Extraction and Solubilization

Protein extraction involves isolating proteins from complex biological samples while maintaining their functionality. It often requires a careful choice of extraction buffers that contain salts, detergents, or stabilizers to preserve protein structure and activity. The solubilization step is crucial for proteins that are membrane-bound or insoluble in aqueous solutions. Detergents such as Triton X-100 or SDS can be used to solubilize proteins from membranes by disrupting lipid bilayers, allowing for effective extraction.


Concentrating protein solutions

After initial purification, protein solutions may need to be concentrated to increase the protein's concentration for downstream applications. This can be achieved through various methods, including ultrafiltration, which uses semi-permeable membranes to separate proteins from smaller molecules and salts, and lyophilization (freeze-drying), which removes water and allows proteins to be stored in a stable form. Precipitation methods, such as ammonium sulfate precipitation, can also be employed to concentrate proteins by altering the solubility conditions.


Gel electrophoresis

Gel electrophoresis Gel electrophoresis is an electrophoresis method for separation and analysis of biomacromolecules (DNA, RNA, proteins, etc.) and their fragments, based on their size and charge through a gel. It is used in clinical chemistry to separate ...
is a powerful analytical technique used to separate proteins based on their size and charge. Proteins are loaded onto a gel matrix, typically made of polyacrylamide or agarose, and an electric current is applied. The negatively charged proteins migrate towards the positive electrode, with smaller proteins moving faster through the gel matrix than larger ones. This method is crucial for assessing the purity and size of protein samples.


Gel electrophoresis under denaturing conditions

Denaturing gel electrophoresis, commonly performed using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), involves treating proteins with SDS, a detergent that denatures proteins and imparts a uniform negative charge. This allows proteins to be separated solely based on their molecular weight, providing a clear picture of the protein composition of a sample.


Gel electrophoresis under non-denaturing conditions

Non-denaturing gel electrophoresis allows proteins to maintain their native structure while being separated. This method is useful for studying protein-protein interactions and enzyme activities. Proteins migrate through the gel based on their size and charge, but their functional properties remain intact, making it ideal for analyzing native protein complexes.


2D gel electrophoresis

2D gel electrophoresis combines isoelectric focusing (IEF) and SDS-PAGE to achieve a high-resolution separation of proteins. In the first dimension, proteins are separated based on their isoelectric points (pI), while in the second dimension, they are separated by molecular weight. This technique allows for the analysis of complex protein mixtures, facilitating the identification of differentially expressed proteins in various conditions.


Electrofocusing

Electrofocusing is a specialized technique that separates proteins based on their isoelectric points in a pH gradient. As an electric field is applied, proteins migrate until they reach the point where their net charge is zero, effectively focusing them into narrow bands. This method provides high resolution and is often used in combination with other techniques for comprehensive protein analysis.


Detecting proteins

The considerably small size of protein macromolecules makes identification and quantification of unknown protein samples particularly difficult. Several reliable methods for quantifying protein have been developed to simplify the process. These methods include Warburg–Christian method, Lowry assay, and Bradford assay (all of which rely on absorbance properties of macromolecules). Bradford assay method uses a dye to bind to protein. Most commonly,
Coomassie brilliant blue Coomassie brilliant blue is the name of two similar triphenylmethane dyes that were developed for use in the textile industry but are now commonly used for staining proteins in analytical biochemistry. Coomassie brilliant blue G-250 differs fr ...
G-250 dye is used. When free of protein, the dye is red but once bound to protein it turns blue. The dye-protein complex absorbs light maximally at the wavelength 595 nanometers and is sensitive for samples containing anywhere from 1 ug to 60 ug. Unlike Lowry and Warburg-Christian Methods, Bradford assays do not rely on Tryptophan and Tyrosine content in proteins which allows the method to be more accurate hypothetically. Lowry assay is similar to biuret assays, but it uses Folin reagent which is more accurate for quantification. Folin reagent is stable at only acidic conditions and the method is susceptible to skewing results depending on how much tryptophan and tyrosine is present in the examined protein. The Folin reagent binds to tryptophan and tyrosine which means the concentration of the two amino acids affects the sensitivity of the method. The method is sensitive at concentration ranges similar to the Bradford method, but requires a minuscule amount more of protein. Warburg-Christian method screens proteins at their naturally occurring absorbance ranges. Most proteins absorb light very well at 280 nanometers due to the presence of tryptophan and tyrosine, but the method is susceptible to varying amounts of the amino acids it relies on. More methods are listed below which link to more detailed accounts for their respective methods.


Non-specific methods that detect total protein only

*
Absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative log ...
: Read at 280 or 215 nm. Can be very inaccurate.
Detection {{Unreferenced, date=March 2018 In general, detection is the action of accessing information without specific cooperation from with the sender. In the history of radio communications, the term "detector" was first used for a device that detected ...
in the range of 100 μg/mL to 1 mg/mL. Ratio of absorbance readings taken at 260/280 can indicate purity/contamination of the sample (pure samples have a ratio <0.8) * Bradford protein assay: Detection in the range of ~1 mg/mL * Biuret Test Derived Assays: ** Bicinchoninic acid assay (BCA assay): Detection down to 0.5 μg/mL **
Lowry Protein assay The Lowry protein assay is a biochemical assay for determining the total level of protein in a solution. The total protein concentration is exhibited by a color change of the sample solution in proportion to protein concentration, which can then be ...
: Detection in the range of 0.01–1.0 mg/mL *
Fluorescamine Fluorescamine is a spiro compound that is not fluorescent itself, but reacts with primary amines to form highly fluorescent products, i.e. it is fluorogenic. It hence has been used as a reagent for the detection of amines and peptide Peptide ...
: Quantifies proteins and peptides in solution if primary amine are present in the amino acids * Amido black: Detection in the range of 1-12 μg/mL *
Colloidal gold Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red (for spherical particles less than 100  nm) or blue-purple (for larger spherical partic ...
: Detection in the range of 20 - 640 ng/mL *
Nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
detection: **
Kjeldahl method The Kjeldahl method or Kjeldahl digestion () in analytical chemistry is a method for the quantitative determination of a sample's organic compound, organic nitrogen plus ammonia/ammonium (NH3/NH4+). Without modification, other forms of inorganic ni ...
: used primarily for food and requires oxidation of material **
Dumas method In analytical chemistry, the Dumas method is a method of elemental analysis for the quantitative determination of nitrogen in chemical substances based on a method first described by Jean-Baptiste Dumas in 1826. The Dumas technique has been aut ...
: used primarily for food and requires combustion of material


Specific methods which can detect amount of a single protein

* Spectrometry methods: ** High-performance liquid chromatography (HPLC): Chromatography method to detect proteins or peptides ** Liquid chromatography–mass spectrometry (LC/MS): Can detect proteins at low concentrations (ng/mL to pg/mL) in blood and body fluids, such as for
Pharmacokinetics Pharmacokinetics (from Ancient Greek ''pharmakon'' "drug" and ''kinetikos'' "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific su ...
. *
Antibody An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as pathogenic bacteria, bacteria and viruses, includin ...
dependent methods: **
Enzyme-linked immunosorbent assay The enzyme-linked immunosorbent assay (ELISA) (, ) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay is a solid-phase type of enzyme immunoassay (EIA) to detect the presence o ...
(
ELISA The enzyme-linked immunosorbent assay (ELISA) (, ) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay is a solid-phase type of enzyme immunoassay (EIA) to detect the presence of ...
): Specifically can detect protein down to pg/mL. ** Protein immunoprecipitation: technique of precipitating a protein antigen out of solution using an antibody that specifically binds to that particular protein. ** Immunoelectrophoresis: separation and characterization of proteins based on electrophoresis and reaction with antibodies. **
Western blot The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detect ...
: couples gel electrophoresis and incubation with antibodies to detect specific proteins in a sample of tissue homogenate or extract (a type of Immunoelectrophoresis technique). ** Protein immunostaining


Protein structures

*
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
*
Protein NMR Nuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and ...
*
Cryo-electron microscopy Cryogenic electron microscopy (cryo-EM) is a transmission electron microscopy technique applied to samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An ...
* Small-angle X-ray scattering *
Circular Dichroism Circular dichroism (CD) is dichroism involving circular polarization, circularly polarized light, i.e., the differential Absorption (electromagnetic radiation), absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand ci ...


Interactions involving proteins

* Protein footprinting


Protein–protein interactions

* (Yeast) two-hybrid system * Protein-fragment complementation assay * Co-immunoprecipitation * Affinity purification and
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
*
Proximity ligation assay Proximity ligation assay (in situ PLA) is a technology that extends the capabilities of traditional immunoassays to include direct detection of proteins, protein interaction, protein interactions, extracellular vesicles and post translational modi ...
* Proximity labeling


Protein–DNA interactions

* ChIP-on-chip *
Chip-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated prote ...
* DamID * Microscale thermophoresis


Protein–RNA interactions

*
Toeprinting assay The toeprinting assay, also known as the primer extension inhibition assay, is a method used in molecular biology that allows one to examine the interactions between messenger RNA and ribosomes or RNA-binding proteins. It is different from the mo ...
* TCP-seq


Computational methods

*
Molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the Motion (physics), physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamics ( ...
*
Protein structure prediction Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its Protein secondary structure, secondary and Protein tertiary structure, tertiary structure ...
* Protein sequence alignment (sequence comparison, including BLAST) *
Protein structural alignment Structural alignment attempts to establish homology between two or more polymer structures based on their shape and three-dimensional conformation. This process is usually applied to protein tertiary structures but can also be used for large R ...
*Protein ontology (see
gene ontology The Gene Ontology (GO) is a major bioinformatics initiative to unify the representation of gene and gene product attributes across all species. More specifically, the project aims to: 1) maintain and develop its controlled vocabulary of gene and ...
)


Other methods

* Hydrogen–deuterium exchange *
Mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
*
Protein sequencing Protein sequencing is the practical process of determining the amino acid sequence of all or part of a protein or peptide. This may serve to identify the protein or characterize its post-translational modifications. Typically, partial sequencing o ...
*
Protein synthesis Protein biosynthesis, or protein synthesis, is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of new proteins. Proteins perform a number of critica ...
*
Proteomics Proteomics is the large-scale study of proteins. Proteins are vital macromolecules of all living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replicatio ...
* Peptide mass fingerprinting *
Ligand binding assay A ligand binding assay (LBA) is an assay, or an analytic procedure, which relies on the binding of ligand molecules to receptors, antibodies or other macromolecules. A detection method is used to determine the presence and amount of the ligand-rece ...
*
Eastern blotting The eastern blot, or eastern blotting, is a biochemical technique used to analyze protein post-translational modifications including the addition of lipids, phosphates, and glycoconjugates. It is most often used to detect carbohydrate epitopes. Thu ...
*Metabolic labeling **Heavy isotope labeling ** Radioactive isotope labeling


See also

* CSH Protocols *
Current Protocols ''Current Protocols'' is a series of laboratory manuals for life scientists. The first title, ''Current Protocols in Molecular Biology'', was established in 1987 by the founding editors Frederick M. Ausubel, Roger Brent, Robert Kingston, David Mo ...


Bibliography

*Daniel M. Bollag, Michael D. Rozycki and Stuart J. Edelstein. (1996.) ''Protein Methods'', 2 ed., Wiley Publishers. .


References

{{Protein methods