In mathematics, an algebraic equation or polynomial equation is an equation of the form
:
where ''P'' is a polynomial with
coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
s in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' refers only to ''univariate equations'', that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the ''multivariate'' case), the term ''polynomial equation'' is usually preferred to ''algebraic equation''.
For example,
:
is an algebraic equation with
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
coefficients and
:
is a multivariate polynomial equation over the rationals.
Some but not all polynomial equations with rational coefficients have a solution that is an algebraic expression that can be found using a finite number of operations that involve only those same types of coefficients (that is, can be solved algebraically). This can be done for all such equations of
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathemati ...
one, two, three, or four; but for degree five or more it can only be done for some equations, not all. A large amount of research has been devoted to compute efficiently accurate approximations of the real or complex solutions of a univariate algebraic equation (see Root-finding algorithm) and of the common solutions of several multivariate polynomial equations (see System of polynomial equations).
Terminology
The term "algebraic equation" dates from the time when the main problem of
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
was to solve univariate polynomial equations. This problem was completely solved during the 19th century; see Fundamental theorem of algebra, Abel–Ruffini theorem and Galois theory.
Since then, the scope of algebra has been dramatically enlarged. In particular, it includes the study of equations that involve th roots and, more generally, algebraic expressions. This makes the term ''algebraic equation'' ambiguous outside the context of the old problem. So the term ''polynomial equation'' is generally preferred when this ambiguity may occur, specially when considering multivariate equations.
clay tablet
In the Ancient Near East, clay tablets (Akkadian ) were used as a writing medium, especially for writing in cuneiform, throughout the Bronze Age and well into the Iron Age.
Cuneiform characters were imprinted on a wet clay tablet with a styl ...
s).
Univariate algebraic equations over the rationals (i.e., with rational coefficients) have a very long history. Ancient mathematicians wanted the solutions in the form of
radical expression
In mathematics, a radicand, also known as an nth root, of a number ''x'' is a number ''r'' which, when raised to the power ''n'', yields ''x'':
:r^n = x,
where ''n'' is a positive integer, sometimes called the ''degree'' of the root. A root ...
s, like for the positive solution of . The ancient Egyptians knew how to solve equations of degree 2 in this manner. The Indian mathematician Brahmagupta (597–668 AD) explicitly described the quadratic formula in his treatise Brāhmasphuṭasiddhānta published in 628 AD, but written in words instead of symbols. In the 9th century Muhammad ibn Musa al-Khwarizmi and other Islamic mathematicians derived the quadratic formula, the general solution of equations of degree 2, and recognized the importance of the discriminant. During the Renaissance in 1545,
Gerolamo Cardano
Gerolamo Cardano (; also Girolamo or Geronimo; french: link=no, Jérôme Cardan; la, Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath, whose interests and proficiencies ranged through those of mathematician, ...
The algebraic equations are the basis of a number of areas of modern mathematics: Algebraic number theory is the study of (univariate) algebraic equations over the rationals (that is, with rational coefficients). Galois theory was introduced by Évariste Galois to specify criteria for deciding if an algebraic equation may be solved in terms of radicals. In field theory, an algebraic extension is an extension such that every element is a root of an algebraic equation over the base field. Transcendental number theory is the study of the real numbers which are not solutions to an algebraic equation over the rationals. A Diophantine equation is a (usually multivariate) polynomial equation with integer coefficients for which one is interested in the integer solutions. Algebraic geometry is the study of the solutions in an algebraically closed field of multivariate polynomial equations.
Two equations are equivalent if they have the same set of solutions. In particular the equation is equivalent to . It follows that the study of algebraic equations is equivalent to the study of polynomials.
A polynomial equation over the rationals can always be converted to an equivalent one in which the
coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
s are
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. For example, multiplying through by 42 = 2·3·7 and grouping its terms in the first member, the previously mentioned polynomial equation becomes
:
Because sine, exponentiation, and 1/''T'' are not polynomial functions,
:
is ''not'' a polynomial equation in the four variables ''x'', ''y'', ''z'', and ''T'' over the rational numbers. However, it is a polynomial equation in the three variables ''x'', ''y'', and ''z'' over the field of the elementary functions in the variable ''T''.
Theory
Polynomials
Given an equation in unknown
:,
with coefficients in a field , one can equivalently say that the solutions of (E) in are the roots in of the polynomial
: