PSR J1614−2230
   HOME

TheInfoList



OR:

PSR J1614–2230 is a
pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
in a binary system with a
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
in the constellation
Scorpius Scorpius is a zodiac constellation located in the Southern celestial hemisphere, where it sits near the center of the Milky Way, between Libra to the west and Sagittarius to the east. Scorpius is an ancient constellation whose recognition pred ...
. It was discovered in 2006 with the Parkes telescope in a survey of unidentified
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
sources in the
Energetic Gamma Ray Experiment Telescope The Energetic Gamma Ray Experiment Telescope (EGRET) was one of four instruments outfitted on NASA's Compton Gamma Ray Observatory satellite. Since lower energy gamma rays cannot be accurately detected on Earth's surface, EGRET was built to det ...
catalog. PSR J1614–2230 is a
millisecond pulsar A millisecond pulsar (MSP) is a pulsar with a rotational period less than about 10 milliseconds. Millisecond pulsars have been detected in radio pulsar, radio, X-ray pulsar, X-ray, and gamma ray portions of the electromagnetic spectrum. The leadi ...
, a type of neutron star, that spins on its axis roughly 317 times per second, corresponding to a period of 3.15 milliseconds. Like all pulsars, it emits radiation in a beam, similar to a
lighthouse A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lens (optics), lenses and to serve as a beacon for navigational aid for maritime pilots at sea or on inland waterways. Ligh ...
. Emission from PSR J1614–2230 is observed as pulses at the spin period of PSR J1614–2230. The pulsed nature of its emission allows for the arrival of individual pulses to be timed. By measuring the arrival time of pulses,
astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
s observed the delay of pulse arrivals from PSR J1614–2230 when it was passing behind its companion from the vantage point of
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. By measuring this delay, known as the
Shapiro delay The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return th ...
, astronomers determined the mass of PSR J1614–2230 and its companion. The team performing the observations found that the mass of PSR J1614–2230 is . This mass made PSR J1614–2230 the most massive known
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
at the time of discovery, and rules out many neutron star
equations of state In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most mod ...
that include
exotic matter There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist. * Several particles who ...
such as
hyperon In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quarks. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically re ...
s and
kaon In particle physics, a kaon, also called a K meson and denoted , is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark ...
condensates. In 2013, a slightly higher neutron star mass measurement was announced for
PSR J0348+0432 PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Payment Systems Regulator in the United Kingdom * Physicians for Social Responsibility, US Political pa ...
, . This confirmed the existence of such massive neutron stars using a different measuring technique. After further high-precision timing of the pulsar, the mass measurement for J1614–2230 was updated to in 2018.


Background

Pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s were discovered in 1967 by
Jocelyn Bell Dame Susan Jocelyn Bell Burnell (; Bell; born 15 July 1943) is a Northern Irish physicist who, as a doctoral student, discovered the first radio pulsars in 1967. This discovery later earned the Nobel Prize in Physics in 1974, but she was not ...
and her adviser
Antony Hewish Antony Hewish (11 May 1924 – 13 September 2021) was a British radio astronomer who won the Nobel Prize for Physics in 1974 (together with fellow radio-astronomer Martin Ryle) for his role in the discovery of pulsars. He was also awarded the ...
using the
Interplanetary Scintillation Array The Interplanetary Scintillation Array (also known as the IPS Array or Pulsar Array) is a radio telescope that was built in 1967 at the Mullard Radio Astronomy Observatory, in Cambridge, United Kingdom, and was operated by the Cavendish Astro ...
. Franco Pacini and
Thomas Gold Thomas Gold (May 22, 1920 – June 22, 2004) was an Austrian-born astrophysicist, who also held British and American citizenship. He was a professor of astronomy at Cornell University, a member of the U.S. National Academy of Sciences, and a Fe ...
quickly put forth the idea that pulsars are highly
magnetized Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
rotating
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s, which form as a result of a
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
at the end of the life of
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s more massive than about . The
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
emitted by pulsars is caused by interaction of the plasma surrounding the neutron star with its rapidly rotating magnetic field. This interaction leads to emission "in the pattern of a rotating beacon," as emission escapes along the magnetic poles of the neutron star. The "rotating beacon" property of pulsars arises from the misalignment of their magnetic poles with their rotational poles. Historically, pulsars have been discovered at
radio wave Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
lengths where emission is strong, but
space telescope A space telescope (also known as space observatory) is a telescope in outer space used to observe astronomical objects. Suggested by Lyman Spitzer in 1946, the first operational telescopes were the American Orbiting Astronomical Observatory, OAO ...
s that operate in the
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
wavelengths have also discovered pulsars.


Observations

The Energetic Gamma-Ray Experiment Telescope (EGRET) identified a half dozen known pulsars at gamma ray wavelengths. Many of the sources it detected had no known counterparts at other wavelengths. In order to see whether any of these sources were pulsars, Fronefield Crawford ''et al.'' used the Parkes telescope to conduct a survey of the EGRET sources located in the plane of the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
that lacked a known counterpart. In the search, they discovered PSR J1614–2230, and concluded that it might be a counterpart to a gamma ray source near the same location. The radio observations revealed that PSR J1614–2230 had a companion, likely a
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
. The observed orbital parameters of the system indicated a minimum companion mass of , and an orbital period of 8.7 days. Paul Demorest ''et al.'' used the
Green Bank Telescope The Robert C. Byrd Green Bank Telescope (GBT) in Green Bank, West Virginia, US is the world's largest fully steerable radio telescope, surpassing the Effelsberg 100-m Radio Telescope in Germany. The Green Bank site was part of the National Rad ...
at the
National Radio Astronomy Observatory The National Radio Astronomy Observatory (NRAO) is a federally funded research and development center of the United States National Science Foundation operated under cooperative agreement by Associated Universities, Inc. for the purpose of radi ...
to observe the system through a complete 8.7 day orbit, recording the pulse arrival times from PSR J1614–2230 over this period. After accounting for factors that would alter pulse arrival times from exactly matching its period of 3.1508076534271 milliseconds, including the orbital parameters of the binary system, the spin of the pulsar, and the motion of the system, Demorest ''et al.'' determined the delay in the arrival of pulses that resulted from the pulse having to travel past the companion to PSR J1614–2230 on its way to
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. This delay is a consequence of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
known as the
Shapiro delay The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return th ...
, and the magnitude of the delay is dependent upon the mass of the white dwarf companion. The best fit companion mass was . Knowing the companion mass and orbital elements then provided enough information to determine the mass of PSR J1614–2230 to be . The measurement was later improved based on observations of the pulses over several years.


Significance

The conditions in neutron stars are very different from those encountered on Earth, as a result of the high
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
and
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
of neutron stars; their masses are of order the mass of a
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
, but they have sizes around in radius, which is comparable to the size of the center of large cities such as
London London is the Capital city, capital and List of urban areas in the United Kingdom, largest city of both England and the United Kingdom, with a population of in . London metropolitan area, Its wider metropolitan area is the largest in Wester ...
. Neutron stars also have the property that as they become more massive, their diameter decreases. The mass of PSR J1614–2230 is the second highest of all the known
neutron stars A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to th ...
. The existence of a neutron star with such a high mass constrains the composition and structure of neutron stars, both of which are poorly understood. The reason for this is that the maximum mass of a neutron star is dependent upon its composition. A neutron star composed of matter such as
hyperon In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quarks. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically re ...
s or
kaon In particle physics, a kaon, also called a K meson and denoted , is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark ...
condensates would collapse to form a
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
before it could reach the observed mass of PSR J1614–2230, meaning neutron star models that include such matter are strongly constrained by this result.


Notes


References

* * * * * * * * {{DEFAULTSORT:PSR J1614-2230 Scorpius Pulsars 03.9