HOME

TheInfoList



OR:

In
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
, an orbit (also known as orbital revolution) is the curved
trajectory A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete tra ...
of an
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an a ...
such as the trajectory of a
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
around a star, or of a
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
around a planet, or of an
artificial satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scienti ...
around an object or position in space such as a planet, moon, asteroid, or
Lagrange point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves t ...
. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow
elliptic orbit In astrodynamics or celestial mechanics, an elliptical orbit or eccentric orbit is an orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. Some orbits have been referre ...
s, with the
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weight function, weighted relative position (vector), position of the d ...
being orbited at a focal point of the ellipse, as described by
Kepler's laws of planetary motion In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, which was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in ...
. For most situations, orbital motion is adequately approximated by
Newtonian mechanics Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body r ...
, which explains
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
as a force obeying an inverse-square law. However,
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's general theory of relativity, which accounts for gravity as due to curvature of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
, with orbits following
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.


History

Historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of
celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed star ...
. This model posited the existence of perfect moving spheres or rings to which the stars and planets were attached. It assumed the heavens were fixed apart from the motion of the spheres and was developed without any understanding of gravity. After the planets' motions were more accurately measured, theoretical mechanisms such as
deferent and epicycle In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (, meaning "circle moving on another circle") was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, ...
s were added. Although the model was capable of reasonably accurately predicting the planets' positions in the sky, more and more epicycles were required as the measurements became more accurate, hence the model became increasingly unwieldy. Originally geocentric, it was modified by
Copernicus Nicolaus Copernicus (19 February 1473 – 24 May 1543) was a Renaissance polymath who formulated a mathematical model, model of Celestial spheres#Renaissance, the universe that placed heliocentrism, the Sun rather than Earth at its cen ...
to place the Sun at the centre to help simplify the model. The model was further challenged during the 16th century, as comets were observed traversing the spheres. The basis for the modern understanding of orbits was first formulated by
Johannes Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
whose results are summarised in his three laws of planetary motion. First, he found that the orbits of the planets in our
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
are elliptical, not circular (or epicyclic), as had previously been believed, and that the Sun is not located at the center of the orbits, but rather at one
focus Focus (: foci or focuses) may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in East Australia Film *Focus (2001 film), ''Focus'' (2001 film), a 2001 film based on the Arthur Miller novel *Focus (2015 ...
. Second, he found that the orbital speed of each planet is not constant, as had previously been thought, but rather that the speed depends on the planet's distance from the Sun. Third, Kepler found a universal relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter, 5.23/11.862, is practically equal to that for Venus, 0.7233/0.6152, in accord with the relationship. Idealised orbits meeting these rules are known as
Kepler orbits In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in ...
.
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
demonstrated that Kepler's laws were derivable from his theory of
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
and that, in general, the orbits of bodies subject to gravity were
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
s (this assumes that the force of gravity propagates instantaneously). Newton showed that, for a pair of bodies, the orbits' sizes are in inverse proportion to their
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
es, and that those bodies orbit their common
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weight function, weighted relative position (vector), position of the d ...
. Where one body is much more massive than the other (as is the case of an artificial satellite orbiting a planet), it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Advances in Newtonian mechanics were then used to explore variations from the simple assumptions behind Kepler orbits, such as the perturbations due to other bodies, or the impact of spheroidal rather than spherical bodies.
Joseph-Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangianew approach to
Newtonian mechanics Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body r ...
emphasizing energy more than force, and made progress on the
three-body problem In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses orbiting each other in space and then calculate their subsequent trajectories using Newton' ...
, discovering the Lagrangian points. In a dramatic vindication of classical mechanics, in 1846
Urbain Le Verrier Urbain Jean Joseph Le Verrier (; 11 March 1811 – 23 September 1877) was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using only mathematics. ...
was able to predict the position of
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
based on unexplained perturbations in the orbit of
Uranus Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
.
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
in his 1916 paper ''The Foundation of the General Theory of Relativity'' explained that gravity was due to curvature of
space-time In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three-dimensional space, three dimensions of space and the one dimension of time into a single four-dimensional continuum (measurement), continu ...
and removed Newton's assumption that changes in gravity propagate instantaneously. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy in understanding orbits. In relativity theory, orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions (except where there are very strong gravity fields and very high speeds) but the differences are measurable. Essentially all the experimental evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy. The original vindication of general relativity is that it was able to account for the remaining unexplained amount in precession of Mercury's perihelion first noted by Le Verrier. However, Newton's solution is still used for most short term purposes since it is significantly easier to use and sufficiently accurate.


Planetary orbits

Within a
planetary system A planetary system is a set of gravity, gravitationally bound non-stellar Astronomical object, bodies in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although ...
, planets,
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
s,
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s and other
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
s,
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s, and
space debris Space debris (also known as space junk, space pollution, space waste, space trash, space garbage, or cosmic debris) are defunct human-made objects in spaceprincipally in Earth orbitwhich no longer serve a useful function. These include dere ...
orbit the system's
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
in
elliptical orbit In astrodynamics or celestial mechanics, an elliptical orbit or eccentric orbit is an orbit with an orbital eccentricity, eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. Some or ...
s. A comet in a parabolic or
hyperbolic Hyperbolic may refer to: * of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics ** Hyperbolic geometry, a non-Euclidean geometry ** Hyperbolic functions, analogues of ordinary trigonometric functions, defined u ...
orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies that are gravitationally bound to one of the planets in a planetary system, either
natural Nature is an inherent character or constitution, particularly of the ecosphere or the universe as a whole. In this general sense nature refers to the laws, elements and phenomena of the physical world, including life. Although humans are part ...
or artificial satellites, follow orbits about a barycenter near or within that planet. Owing to mutual gravitational perturbations, the eccentricities of the planetary orbits vary over time. Mercury, the smallest planet in the Solar System, has the most eccentric orbit. At the present
epoch In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured. The moment of epoch is usually decided b ...
,
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
has the next largest eccentricity while the smallest orbital eccentricities are seen with
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
and
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
. As two objects orbit each other, the
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
is that point at which the two objects are closest to each other and the
apoapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
is that point at which they are the farthest. (More specific terms are used for specific bodies. For example, ''perigee'' and ''apogee'' are the lowest and highest parts of an orbit around Earth, while ''perihelion'' and ''aphelion'' are the closest and farthest points of an orbit around the Sun.) In the case of planets orbiting a star, the mass of the star and all its satellites are calculated to be at a single point called the barycenter. The paths of all the star's satellites are elliptical orbits about that barycenter. Each satellite in that system will have its own elliptical orbit with the barycenter at one focal point of that ellipse. At any point along its orbit, any satellite will have a certain value of kinetic and potential energy with respect to the barycenter, and the sum of those two energies is a constant value at every point along its orbit. As a result, as a planet approaches
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, the planet will increase in speed as its potential energy decreases; as a planet approaches
apoapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, its velocity will decrease as its potential energy increases.


Principles

There are a few common ways of understanding orbits: * A force, such as gravity, pulls an object into a curved path as it attempts to fly off in a straight line. * As the object is pulled toward the massive body, it falls toward that body. However, if it has enough tangential velocity it will not fall into the body but will instead continue to follow the curved trajectory caused by that body indefinitely. The object is then said to be orbiting the body. The velocity relationship of two moving objects with mass can thus be considered in four practical classes, with subtypes: ; No orbit: ; Suborbital trajectories: Range of interrupted elliptical paths ; Orbital trajectories (or simply, orbits): ; Open (or escape) trajectories: Orbital rockets are launched vertically at first to lift the rocket above the atmosphere (which causes frictional drag), and then slowly pitch over and finish firing the rocket engine parallel to the atmosphere to achieve orbit speed. Once in orbit, their speed keeps them in orbit above the atmosphere. If e.g., an elliptical orbit dips into dense air, the object will lose speed and re-enter (i.e. fall). Occasionally a space craft will intentionally intercept the atmosphere, in an act commonly referred to as an aerobraking maneuver.


Illustration

As an illustration of an orbit around a planet, the Newton's cannonball model may prove useful (see image below). This is a '
thought experiment A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is ...
', in which a cannon on top of a tall mountain is able to fire a cannonball horizontally at any chosen muzzle speed. The effects of air friction on the cannonball are ignored (or perhaps the mountain is high enough that the cannon is above the Earth's atmosphere, which is the same thing). If the cannon fires its ball with a low initial speed, the trajectory of the ball curves downward and hits the ground (A). As the firing speed is increased, the cannonball hits the ground farther (B) away from the cannon, because while the ball is still falling towards the ground, the ground is increasingly curving away from it (see first point, above). All these motions are actually "orbits" in a technical sense—they are describing a portion of an elliptical path around the center of gravity—but the orbits are interrupted by striking the Earth. If the cannonball is fired with sufficient speed, the ground curves away from the ball at least as much as the ball falls—so the ball never strikes the ground. It is now in what could be called a non-interrupted or circumnavigating, orbit. For any specific combination of height above the center of gravity and mass of the planet, there is one specific firing speed (unaffected by the mass of the ball, which is assumed to be very small relative to the Earth's mass) that produces a
circular orbit A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, Potential energy, potential and kinetic energy are constant. T ...
, as shown in (C). As the firing speed is increased beyond this, non-interrupted elliptic orbits are produced; one is shown in (D). If the initial firing is above the surface of the Earth as shown, there will also be non-interrupted elliptical orbits at slower firing speed; these will come closest to the Earth at the point half an orbit beyond, and directly opposite the firing point, below the circular orbit. At a specific horizontal firing speed called
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
, dependent on the mass of the planet and the distance of the object from the barycenter, an open orbit (E) is achieved that has a parabolic path. At even greater speeds the object will follow a range of hyperbolic trajectories. In a practical sense, both of these trajectory types mean the object is "breaking free" of the planet's gravity, and "going off into space" never to return.


Newton's laws of motion


Newton's law of gravitation and laws of motion for two-body problems

In most situations, relativistic effects can be neglected, and
Newton's laws Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body re ...
give a sufficiently accurate description of motion. The acceleration of a body is equal to the sum of the forces acting on it, divided by its mass, and the gravitational force acting on a body is proportional to the product of the masses of the two attracting bodies and decreases inversely with the square of the distance between them. To this Newtonian approximation, for a system of two-point masses or spherical bodies, only influenced by their mutual gravitation (called a
two-body problem In classical mechanics, the two-body problem is to calculate and predict the motion of two massive bodies that are orbiting each other in space. The problem assumes that the two bodies are point particles that interact only with one another; th ...
), their trajectories can be exactly calculated. If the heavier body is much more massive than the smaller, as in the case of a satellite or small moon orbiting a planet or for the Earth orbiting the Sun, it is accurate enough and convenient to describe the motion in terms of a
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
that is centered on the heavier body, and we say that the lighter body is in orbit around the heavier. For the case where the masses of two bodies are comparable, an exact Newtonian solution is still sufficient and can be had by placing the coordinate system at the center of the mass of the system.


Defining gravitational potential energy

Energy is associated with
gravitational field In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
s. A stationary body far from another can do external work if it is pulled towards it, and therefore has gravitational ''
potential energy In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
''. Since work is required to separate two bodies against the pull of gravity, their gravitational potential energy increases as they are separated, and decreases as they approach one another. For point masses, the gravitational energy decreases to zero as they approach zero separation. It is convenient and conventional to assign the potential energy as having zero value when they are an infinite distance apart, and hence it has a negative value (since it decreases from zero) for smaller finite distances.


Orbital energies and orbit shapes

When only two gravitational bodies interact, their orbits follow a
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
. The orbit can be open (implying the object never returns) or closed (returning). Which it is depends on the total
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
( kinetic +
potential energy In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
) of the system. In the case of an open orbit, the speed at any position of the orbit is at least the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
for that position, in the case of a closed orbit, the speed is always less than the escape velocity. Since the kinetic energy is never negative if the common convention is adopted of taking the potential energy as zero at infinite separation, the bound orbits will have negative total energy, the parabolic trajectories zero total energy, and hyperbolic orbits positive total energy. An open orbit will have a parabolic shape if it has the velocity of exactly the escape velocity at that point in its trajectory, and it will have the shape of a
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
when its velocity is greater than the escape velocity. When bodies with escape velocity or greater approach each other, they will briefly curve around each other at the time of their closest approach, and then separate, forever. All closed orbits have the shape of an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
. A circular orbit is a special case, wherein the foci of the ellipse coincide. The point where the orbiting body is closest to Earth is called the
perigee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, and when orbiting a body other than earth it is called the periapsis (less properly, "perifocus" or "pericentron"). The point where the satellite is farthest from Earth is called the apogee, apoapsis, or sometimes apifocus or apocentron. A line drawn from periapsis to apoapsis is the '' line-of-apsides''. This is the major axis of the ellipse, the line through its longest part.


Kepler's laws

Bodies following closed orbits repeat their paths with a certain time called the period. This motion is described by the empirical laws of Kepler, which can be mathematically derived from Newton's laws. These can be formulated as follows: # The orbit of a planet around the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
is an ellipse, with the Sun in one of the focal points of that ellipse. his focal point is actually the barycenter of the Solar System">Sun-planet system; for simplicity, this explanation assumes the Sun's mass is infinitely larger than that planet's.] The planet's orbit lies in a plane, called the
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) a ...
. The point on the orbit closest to the attracting body is the periapsis. The point farthest from the attracting body is called the apoapsis. There are also specific terms for orbits about particular bodies; things orbiting the Sun have a
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
and
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, things orbiting the Earth have a
perigee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
and apogee, and things orbiting the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
have a
perilune An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides pert ...
and apolune (or periselene and aposelene respectively). An orbit around any
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
, not just the Sun, has a
periastron An apsis (; ) is the farthest or nearest point in the orbit of a planetary-mass object, planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two maximum a ...
and an apastron. # As the planet moves in its orbit, the line from the Sun to the planet sweeps a constant area of the
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) a ...
for a given period of time, regardless of which part of its orbit the planet traces during that period of time. This means that the planet moves faster near its
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
than near its
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, because at the smaller distance it needs to trace a greater arc to cover the same area. This law is usually stated as "equal areas in equal time." # For a given orbit, the ratio of the cube of its
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longe ...
to the square of its period is constant.


Limitations of Newton's law of gravitation

Note that while bound orbits of a point mass or a spherical body with a Newtonian gravitational field are closed
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
s, which repeat the same path exactly and indefinitely, any non-spherical or non-Newtonian effects (such as caused by the slight oblateness of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
, or by relativistic effects, thereby changing the gravitational field's behavior with distance) will cause the orbit's shape to depart from the closed
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
s characteristic of Newtonian two-body motion. The two-body solutions were published by Newton in Principia in 1687. In 1912, Karl Fritiof Sundman developed a converging infinite series that solves the
three-body problem In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses orbiting each other in space and then calculate their subsequent trajectories using Newton' ...
; however, it converges too slowly to be of much use. Except for special cases like the
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium (mechanics), equilibrium for small-mass objects under the gravity, gravitational influence of two massive orbit, orbiting b ...
s, no method is known to solve the equations of motion for a system with four or more bodies.


Approaches to many-body problems

Rather than an exact closed form solution, orbits with many bodies can be approximated with arbitrarily high accuracy. These approximations take two forms: :One form takes the pure elliptic motion as a basis and adds perturbation terms to account for the gravitational influence of multiple bodies. This is convenient for calculating the positions of astronomical bodies. The equations of motion of the moons, planets, and other bodies are known with great accuracy, and are used to generate tables for
celestial navigation Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface ...
. Still, there are secular phenomena that have to be dealt with by post-Newtonian methods. :The differential equation form is used for scientific or mission-planning purposes. According to Newton's laws, the sum of all the forces acting on a body will equal the mass of the body times its acceleration (''F = ma''). Therefore accelerations can be expressed in terms of positions. The perturbation terms are much easier to describe in this form. Predicting subsequent positions and velocities from initial values of position and velocity corresponds to solving an
initial value problem In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or ...
. Numerical methods calculate the positions and velocities of the objects a short time in the future, then repeat the calculation ad nauseam. However, tiny arithmetic errors from the limited accuracy of a computer's math are cumulative, which limits the accuracy of this approach. Differential simulations with large numbers of objects perform the calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large assemblages of objects have been simulated.


Formulation


Newtonian analysis of orbital motion

The following derivation applies to such an elliptical orbit. We start only with the Newtonian law of gravitation stating that the gravitational acceleration towards the central body is related to the inverse of the square of the distance between them, namely : F_2 = -\frac where ''F''2 is the force acting on the mass ''m''2 caused by the gravitational attraction mass ''m''1 has for ''m''2, ''G'' is the universal gravitational constant, and ''r'' is the distance between the two masses centers. From Newton's second law, the summation of the forces acting on ''m''2 related to that body's acceleration: : F_2 = m_2 A_2 where ''A''2 is the acceleration of ''m''2 caused by the force of gravitational attraction ''F''2 of ''m''1 acting on ''m''2. Combining Eq. 1 and 2: : -\frac = m_2 A_2 Solving for the acceleration, ''A''2: : A_2 = \frac = - \frac \frac = -\frac where \mu\, is the
standard gravitational parameter The standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of that body. For two bodies, the parameter may be expressed as , or as when one body is much larger than the ...
, in this case G m_1. It is understood that the system being described is ''m''2, hence the subscripts can be dropped. We assume that the central body is massive enough that it can be considered to be stationary and we ignore the more subtle effects of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. When a pendulum or an object attached to a spring swings in an ellipse, the inward acceleration/force is proportional to the distance A = F/m = - k r. Due to the way vectors add, the component of the force in the \hat or in the \hat directions are also proportionate to the respective components of the distances, r''_x = A_x = - k r_x . Hence, the entire analysis can be done separately in these dimensions. This results in the harmonic parabolic equations x = A \cos(t) and y = B \sin(t) of the ellipse. The location of the orbiting object at the current time t is located in the plane using
vector calculus Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
in
polar coordinates In mathematics, the polar coordinate system specifies a given point (mathematics), point in a plane (mathematics), plane by using a distance and an angle as its two coordinate system, coordinates. These are *the point's distance from a reference ...
both with the standard Euclidean basis and with the polar basis with the origin coinciding with the center of force. Let r be the distance between the object and the center and \theta be the angle it has rotated. Let \hat and \hat be the standard Euclidean bases and let \hat = \cos(\theta)\hat + \sin(\theta)\hat and \hat = - \sin(\theta)\hat + \cos(\theta)\hat be the radial and transverse polar basis with the first being the unit vector pointing from the central body to the current location of the orbiting object and the second being the orthogonal unit vector pointing in the direction that the orbiting object would travel if orbiting in a counter clockwise circle. Then the vector to the orbiting object is : \hat = r \cos(\theta)\hat + r \sin(\theta)\hat = r \hat We use \dot r and \dot \theta to denote the standard derivatives of how this distance and angle change over time. We take the derivative of a vector to see how it changes over time by subtracting its location at time t from that at time t + \delta t and dividing by \delta t . The result is also a vector. Because our basis vector \hat moves as the object orbits, we start by differentiating it. From time t to t + \delta t , the vector \hat keeps its beginning at the origin and rotates from angle \theta to \theta + \dot \theta\ \delta t which moves its head a distance \dot \theta\ \delta t in the perpendicular direction \hat giving a derivative of \dot \theta \hat . : \begin \hat &= \cos(\theta)\hat + \sin(\theta)\hat \\ \frac = \dot &= -\sin(\theta)\dot \theta \hat + \cos(\theta)\dot \theta \hat = \dot \theta \hat \\ \hat &= -\sin(\theta)\hat + \cos(\theta)\hat \\ \frac = \dot &= -\cos(\theta)\dot \theta \hat - \sin(\theta) \dot \theta \hat = -\dot \theta \hat \end We can now find the velocity and acceleration of our orbiting object. : \begin \hat &= r \hat \\ \dot &= \frac \hat + r \frac = \dot r \hat + r \left \dot \theta \hat \right\\ \ddot &= \left ddot r \hat + \dot r \dot \theta \hat \right+ \left dot r \dot \theta \hat + r \ddot \theta \hat - r \dot \theta^2 \hat \right\\ &= \left ddot r - r\dot\theta^2\righthat + \left \ddot\theta + 2 \dot r \dot\theta\right\hat \end The coefficients of \hat and \hat give the accelerations in the radial and transverse directions. As said, Newton gives this first due to gravity is -\mu/r^2 and the second is zero. Equation (2) can be rearranged using integration by parts. : r \ddot\theta + 2 \dot r \dot\theta = \frac\frac\left( r^2 \dot \theta \right) = 0 We can multiply through by r because it is not zero unless the orbiting object crashes. Then having the derivative be zero gives that the function is a constant. which is actually the theoretical proof of Kepler's second law (A line joining a planet and the Sun sweeps out equal areas during equal intervals of time). The constant of integration, ''h'', is the angular momentum per unit mass. In order to get an equation for the orbit from equation (1), we need to eliminate time. (See also Binet equation.) In polar coordinates, this would express the distance r of the orbiting object from the center as a function of its angle \theta . However, it is easier to introduce the auxiliary variable u = 1/r and to express u as a function of \theta . Derivatives of r with respect to time may be rewritten as derivatives of u with respect to angle. : u = : \dot\theta = \frac = hu^2 (reworking (3)) : \begin \frac &= \frac\left(\frac\right)\frac = -\frac = -\frac \\ \frac &= -\frac\frac\frac = -\frac = -\frac \ \ \ \text \ \ \ \ddot r = - h^2 u^2 \frac \end Plugging these into (1) gives : \begin \ddot r - r\dot\theta^2 &= -\frac \\ -h^2 u^2 \frac - \frac \left(h u^2\right)^2 &= -\mu u^2 \end So for the gravitational force – or, more generally, for ''any'' inverse square force law – the right hand side of the equation becomes a constant and the equation is seen to be the harmonic equation (up to a shift of origin of the dependent variable). The solution is: : u(\theta) = \frac\mu + A \cos(\theta - \theta_0) where ''A'' and ''θ''0 are arbitrary constants. This resulting equation of the orbit of the object is that of an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
in Polar form relative to one of the focal points. This is put into a more standard form by letting e \equiv h^2 A/\mu be the
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
, which when rearranged we see: : u(\theta) = \frac\mu (1+ e\cos(\theta - \theta_0)) Note that by letting a \equiv h^2/\mu\left(1 - e^2\right) be the semi-major axis and letting \theta_0 \equiv 0 so the long axis of the ellipse is along the positive ''x'' coordinate we yield: :r(\theta) = \frac When the two-body system is under the influence of torque, the angular momentum ''h'' is not a constant. After the following calculation: :\begin \frac &= -\frac \frac = -\frac \frac \\ \frac &= -\frac \frac - \frac \frac \frac \\ \left(\frac\right)^2 r &= \frac \end we will get the Sturm-Liouville equation of two-body system.


Relativistic orbital motion

The above classical ( Newtonian) analysis of
orbital mechanics Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal ...
assumes that the more subtle effects of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, such as frame dragging and gravitational time dilation are negligible. Relativistic effects cease to be negligible when near very massive bodies (as with the precession of Mercury's orbit about the Sun), or when extreme precision is needed (as with calculations of the
orbital elements Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same o ...
and time signal references for GPS satellites.).


Specification

Six parameters are required to specify a Keplerian orbit about a body. For example, the three numbers that specify the body's initial position, and the three values that specify its velocity will define a unique orbit that can be calculated forwards (or backwards) in time. However, traditionally the parameters used are slightly different. The traditionally used set of orbital elements is called the set of Keplerian elements, after Johannes Kepler and his laws. The Keplerian elements are six: *
Inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Eart ...
(''i'') * Longitude of the ascending node (Ω) * Argument of periapsis (ω) *
Eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
(''e'') *
Semimajor axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
(''a'') *
Mean anomaly In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical ...
at
epoch In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured. The moment of epoch is usually decided b ...
(''M''0). In principle, once the orbital elements are known for a body, its position can be calculated forward and backward indefinitely in time. However, in practice, orbits are affected or perturbed, by other forces than simple gravity from an assumed point source (see the next section), and thus the orbital elements change over time. Note that, unless the eccentricity is zero, ''a'' is not the average orbital radius. The time-averaged orbital distance is given by: :\bar = a \left(1 + \frac \right)


Orbital planes

The analysis so far has been two dimensional; it turns out that an unperturbed orbit is two-dimensional in a plane fixed in space, and thus the extension to three dimensions requires simply rotating the two-dimensional plane into the required angle relative to the poles of the planetary body involved. The rotation to do this in three dimensions requires three numbers to uniquely determine; traditionally these are expressed as three angles.


Orbital period

The orbital period is simply how long an orbiting body takes to complete one orbit.


Perturbations

An orbital perturbation is when a force or impulse which is much smaller than the overall force or average impulse of the main gravitating body and which is external to the two orbiting bodies causes an acceleration, which changes the parameters of the orbit over time.


Radial, prograde and transverse perturbations

A small radial impulse given to a body in orbit changes the
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
, but not the
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
(to first order). A prograde or retrograde impulse (i.e. an impulse applied along the orbital motion) changes both the eccentricity and the
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
. Notably, a prograde impulse at
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
raises the altitude at
apoapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, and vice versa and a retrograde impulse does the opposite. A transverse impulse (out of the orbital plane) causes rotation of the
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) a ...
without changing the period or eccentricity. In all instances, a closed orbit will still intersect the perturbation point.


Orbital decay

If an orbit is about a planetary body with a significant atmosphere, its orbit can decay because of drag. Particularly at each
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, the object experiences atmospheric drag, losing energy. Each time, the orbit grows less eccentric (more circular) because the object loses kinetic energy precisely when that energy is at its maximum. This is similar to the effect of slowing a pendulum at its lowest point; the highest point of the pendulum's swing becomes lower. With each successive slowing more of the orbit's path is affected by the atmosphere and the effect becomes more pronounced. Eventually, the effect becomes so great that the maximum kinetic energy is not enough to return the orbit above the limits of the atmospheric drag effect. When this happens the body will rapidly spiral down and intersect the central body. The bounds of an atmosphere vary wildly. During a
solar maximum Solar maximum is the regular period of greatest solar activity during the Sun's 11-year solar cycle. During solar maximum, large numbers of sunspots appear, and the solar irradiance output grows by about 0.07%. On average, the solar cycle take ...
, the Earth's atmosphere causes drag up to a hundred kilometres higher than during a solar minimum. Some satellites with long conductive tethers can also experience orbital decay because of electromagnetic drag from the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from structure of Earth, Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from ...
. As the wire cuts the magnetic field it acts as a generator, moving electrons from one end to the other. The orbital energy is converted to heat in the wire. Orbits can be artificially influenced through the use of rocket engines which change the kinetic energy of the body at some point in its path. This is the conversion of chemical or electrical energy to kinetic energy. In this way changes in the orbit shape or orientation can be facilitated. Another method of artificially influencing an orbit is through the use of solar sails or magnetic sails. These forms of propulsion require no propellant or energy input other than that of the Sun, and so can be used indefinitely. See statite for one such proposed use. Orbital decay can occur due to
tidal force The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction. It is the ...
s for objects below the synchronous orbit for the body they're orbiting. The gravity of the orbiting object raises tidal bulges in the primary, and since below the synchronous orbit, the orbiting object is moving faster than the body's surface the bulges lag a short angle behind it. The gravity of the bulges is slightly off of the primary-satellite axis and thus has a component along with the satellite's motion. The near bulge slows the object more than the far bulge speeds it up, and as a result, the orbit decays. Conversely, the gravity of the satellite on the bulges applies
torque In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically \boldsymbol\tau, the lowercase Greek letter ''tau''. Wh ...
on the primary and speeds up its rotation. Artificial satellites are too small to have an appreciable tidal effect on the planets they orbit, but several moons in the Solar System are undergoing orbital decay by this mechanism. Mars' innermost moon Phobos is a prime example and is expected to either impact Mars' surface or break up into a ring within 50 million years. Orbits can decay via the emission of
gravitational wave Gravitational waves are oscillations of the gravitational field that Wave propagation, travel through space at the speed of light; they are generated by the relative motion of gravity, gravitating masses. They were proposed by Oliver Heaviside i ...
s. This mechanism is extremely weak for most stellar objects, only becoming significant in cases where there is a combination of extreme mass and extreme acceleration, such as with
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s or
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s that are orbiting each other closely.


Oblateness

The standard analysis of orbiting bodies assumes that all bodies consist of uniform spheres, or more generally, concentric shells each of uniform density. It can be shown that such bodies are gravitationally equivalent to point sources. However, in the real world, many bodies rotate, and this introduces oblateness and distorts the gravity field, and gives a
quadrupole A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure re ...
moment to the gravitational field which is significant at distances comparable to the radius of the body. In the general case, the gravitational potential of a rotating body such as, e.g., a planet is usually expanded in multipoles accounting for the departures of it from spherical symmetry. From the point of view of satellite dynamics, of particular relevance are the so-called even zonal harmonic coefficients, or even zonals, since they induce secular orbital perturbations which are cumulative over time spans longer than the orbital period. They do depend on the orientation of the body's symmetry axis in the space, affecting, in general, the whole orbit, with the exception of the semimajor axis.


Multiple gravitating bodies

The effects of other gravitating bodies can be significant. For example, the
orbit of the Moon The Moon orbits Earth in the retrograde and prograde motion, prograde direction and completes one orbital period, revolution relative to the March Equinox, Vernal Equinox and the fixed stars in about 27.3 days (a tropical month and sidereal mont ...
cannot be accurately described without allowing for the action of the Sun's gravity as well as the Earth's. One approximate result is that bodies will usually have reasonably stable orbits around a heavier planet or moon, in spite of these perturbations, provided they are orbiting well within the heavier body's
Hill sphere The Hill sphere is a common model for the calculation of a Sphere of influence (astrodynamics), gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical ...
. When there are more than two gravitating bodies it is referred to as an
n-body problem In physics, the -body problem is the problem of predicting the individual motions of a group of astronomical object, celestial objects interacting with each other gravitationally.Leimanis and Minorsky: Our interest is with Leimanis, who first d ...
. Most n-body problems have no closed form solution, although some special cases have been formulated.


Light radiation and stellar wind

For smaller bodies particularly, light and
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
can cause significant perturbations to the
attitude Attitude or Attitude may refer to: Philosophy and psychology * Attitude (psychology), a disposition or state of mind ** Attitude change * Propositional attitude, a mental state held towards a proposition Science and technology * Orientation ...
and direction of motion of the body, and over time can be significant. Of the planetary bodies, the motion of
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s is particularly affected over large periods when the asteroids are rotating relative to the Sun.


Strange orbits

Mathematicians have discovered that it is possible in principle to have multiple bodies in non-elliptical orbits that repeat periodically, although most such orbits are not stable regarding small perturbations in mass, position, or velocity. However, some special stable cases have been identified, including a planar figure-eight orbit occupied by three moving bodies. Further studies have discovered that nonplanar orbits are also possible, including one involving 12 masses moving in 4 roughly circular, interlocking orbits topologically equivalent to the edges of a cuboctahedron. Finding such orbits naturally occurring in the universe is thought to be extremely unlikely, because of the improbability of the required conditions occurring by chance.


Astrodynamics

Orbital mechanics or astrodynamics is the application of
ballistics Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially weapon munitions such as bullets, unguided bombs, rockets and the like; the science or art of designing and acceler ...
and
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
to the practical problems concerning the motion of
rocket A rocket (from , and so named for its shape) is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely ...
s and other
spacecraft A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
. The motion of these objects is usually calculated from
Newton's laws of motion Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body re ...
and
Newton's law of universal gravitation Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is Proportionality (mathematics)#Direct proportionality, proportional to the product ...
. It is a core discipline within space mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, including spacecraft and natural astronomical bodies such as star systems,
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s,
moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
s, and
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s. Orbital mechanics focuses on spacecraft trajectories, including
orbital maneuver In spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth, an orbital maneuver is called a ''deep-space maneuver (DSM)''. When a spacec ...
s, orbit plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers.
General relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
is a more exact theory than Newton's laws for calculating orbits, and is sometimes necessary for greater accuracy or in high-gravity situations (such as orbits close to the Sun).


Earth orbits

*
Low Earth orbit A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
(LEO):
Geocentric orbit A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,21 ...
s with altitudes up to 2,000 km (0–1,240
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a imperial unit, British imperial unit and United States customary unit of length; both are based on the older English unit of Unit of length, le ...
s). *
Medium Earth orbit A medium Earth orbit (MEO) is an geocentric orbit, Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between above sea level.
(MEO):
Geocentric orbit A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,21 ...
s ranging in altitude from 2,000 km (1,240
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a imperial unit, British imperial unit and United States customary unit of length; both are based on the older English unit of Unit of length, le ...
s) to just below
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital ...
at . Also known as an intermediate circular orbit. These are "most commonly at , or , with an orbital period of 12 hours." * Both
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital ...
(GSO) and
geostationary orbit A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular orbit, circular geosynchronous or ...
(GEO) are orbits around Earth matching Earth's sidereal rotation period. All geosynchronous and geostationary orbits have a
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longe ...
of . All geostationary orbits are also geosynchronous, but not all geosynchronous orbits are geostationary. A geostationary orbit stays exactly above the equator, whereas a geosynchronous orbit may swing north and south to cover more of the Earth's surface. Both complete one full orbit of Earth per sidereal day (relative to the stars, not the Sun). *
High Earth orbit A high Earth orbit is a geocentric orbit with an apsis, apogee farther than that of the geosynchronous orbit, which is height above mean sea level, away from Earth. In this article, the non-standard abbreviation of ''HEO'' is used for high Ear ...
:
Geocentric orbit A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,21 ...
s above the altitude of
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital ...
35,786 km (22,240
mile The mile, sometimes the international mile or statute mile to distinguish it from other miles, is a imperial unit, British imperial unit and United States customary unit of length; both are based on the older English unit of Unit of length, le ...
s).


Scaling in gravity

The
gravitational constant The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's general relativity, theory of general relativity. It ...
''G'' has been calculated as: * (6.6742 ± 0.001) × 10−11 (kg/m3)−1s−2. Thus the constant has dimension density−1 time−2. This corresponds to the following properties. Scaling of distances (including sizes of bodies, while keeping the densities the same) gives similar orbits without scaling the time: if for example distances are halved, masses are divided by 8, gravitational forces by 16 and gravitational accelerations by 2. Hence velocities are halved and orbital periods and other travel times related to gravity remain the same. For example, when an object is dropped from a tower, the time it takes to fall to the ground remains the same with a scale model of the tower on a scale model of the Earth. Scaling of distances while keeping the masses the same (in the case of point masses, or by adjusting the densities) gives similar orbits; if distances are multiplied by 4, gravitational forces and accelerations are divided by 16, velocities are halved and orbital periods are multiplied by 8. When all densities are multiplied by 4, orbits are the same; gravitational forces are multiplied by 16 and accelerations by 4, velocities are doubled and orbital periods are halved. When all densities are multiplied by 4, and all sizes are halved, orbits are similar; masses are divided by 2, gravitational forces are the same, gravitational accelerations are doubled. Hence velocities are the same and orbital periods are halved. In all these cases of scaling. if densities are multiplied by 4, times are halved; if velocities are doubled, forces are multiplied by 16. These properties are illustrated in the formula (derived from the formula for the orbital period) : GT^2 \rho = 3\pi \left( \frac \right)^3, for an elliptical orbit with
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longe ...
''a'', of a small body around a spherical body with radius ''r'' and average density ''ρ'', where ''T'' is the orbital period. See also Kepler’s third law.


Tidal locking

Some bodies are tidally locked with other bodies, meaning that one side of the celestial body is permanently facing its host object. This is the case for Earth-
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
and Pluto-Charon system.


See also

*
Ephemeris In astronomy and celestial navigation, an ephemeris (; ; , ) is a book with tables that gives the trajectory of naturally occurring astronomical objects and artificial satellites in the sky, i.e., the position (and possibly velocity) over tim ...
is a compilation of positions of naturally occurring astronomical objects as well as artificial satellites in the sky at a given time or times. * Free drift * Klemperer rosette *
List of orbits This is a list of types of gravitational orbit classified by various characteristics. Common abbreviations List of abbreviations of common Earth orbits List of abbreviations of other orbits Classifications The following is a list of t ...
*
Molniya orbit A Molniya orbit ( rus, Молния, p=ˈmolnʲɪjə, a=Ru-молния.ogg, "Lightning") is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with ...
* Orbit determination *
Orbital spaceflight An orbital spaceflight (or orbital flight) is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altit ...
* Perifocal coordinate system *
Polar orbit A polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of abo ...
* Radial trajectory * Rosetta orbit * VSOP model


References


Further reading

* * * Discusses new algorithms for determining the orbits of both natural and artificial celestial bodies. *


External links


CalcTool: Orbital period of a planet calculator
Has wide choice of units. Requires JavaScript.

Requires Java.

includes (calculated) data on Earth orbit variations over the last 50 million years and for the coming 20 million years

Requires JavaScript.

(Rocket and Space Technology)
Orbital simulations
by Varadi, Ghil and Runnegar (2003) provide another, slightly different series for Earth orbit eccentricity, and also a series for orbital inclination. Orbits for the other planets were also calculated, by , but only th
eccentricity data for Earth and Mercury
are available online.
Understand orbits using direct manipulation
. Requires JavaScript and Macromedia * {{Authority control Celestial mechanics Periodic phenomena Gravity Astrodynamics Concepts in astronomy