HOME

TheInfoList



OR:

A myofibril (also known as a muscle fibril or sarcostyle) is a basic rod-like
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
of a
muscle cell A muscle cell, also known as a myocyte, is a mature contractile Cell (biology), cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal muscle, skeletal, smooth muscle, smooth, and Cardiac muscle, cardiac ...
.
Skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
s are composed of long, tubular cells known as
muscle fibers Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
, and these cells contain many chains of myofibrils. Each myofibril has a diameter of 1–2
micrometre The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
s. They are created during
embryonic development In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm, sperm cell (spermat ...
in a process known as
myogenesis Myogenesis is the formation of skeletal muscle, skeletal muscular tissue, particularly during embryonic development. Skeletal muscle#Skeletal muscle cells, Muscle fibers generally form through the fusion of precursor cell, precursor myoblasts in ...
. Myofibrils are composed of long proteins including
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
,
myosin Myosins () are a Protein family, family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are adenosine triphosphate, ATP- ...
, and
titin Titin (; also called connectin) is a protein that in humans is encoded by the ''TTN'' gene. The protein, which is over 1 μm in length, functions as a molecular spring that is responsible for the passive elasticity of muscle. It comprises 2 ...
, and other proteins that hold them together. These proteins are organized into thick, thin, and
elastic Elastic is a word often used to describe or identify certain types of elastomer, Elastic (notion), elastic used in garments or stretch fabric, stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rub ...
myofilament Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act togeth ...
s, which repeat along the length of the myofibril in sections or units of contraction called
sarcomere A sarcomere (Greek σάρξ ''sarx'' "flesh", μέρος ''meros'' "part") is the smallest functional unit of striated muscle tissue. It is the repeating unit between two Z-lines. Skeletal striated muscle, Skeletal muscles are composed of tubular ...
s. Muscles contract by sliding the thick myosin, and thin actin myofilaments along each other.


Structure

Each myofibril has a diameter of between 1 and 2
micrometre The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
s (μm). The filaments of myofibrils,
myofilament Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act togeth ...
s, consist of three types, thick, thin, and
elastic filament Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act togeth ...
s. *Thin filaments consist primarily of the protein
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
, coiled with nebulin filaments. Actin, when polymerized into filaments, forms the "ladder" along which the myosin filaments "climb" to generate motion *Thick filaments consist primarily of the protein
myosin Myosins () are a Protein family, family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are adenosine triphosphate, ATP- ...
, that is responsible for force generation. It is composed of a globular head with both ATP and actin binding sites, and a long tail involved in its polymerization into myosin filaments. *Elastic filaments are made up of a giant protein called
titin Titin (; also called connectin) is a protein that in humans is encoded by the ''TTN'' gene. The protein, which is over 1 μm in length, functions as a molecular spring that is responsible for the passive elasticity of muscle. It comprises 2 ...
and hold the thick filaments in place. The
protein complex A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple active site, catalytic domains are found in a single polypeptide chain. ...
composed of actin and myosin is sometimes referred to as
actomyosin Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act toget ...
. In striated
skeletal A skeleton is the structural frame that supports the body of most animals. There are several types of skeletons, including the exoskeleton, which is a rigid outer shell that holds up an organism's shape; the endoskeleton, a rigid internal fram ...
and cardiac
muscle tissue Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to contract. ...
the actin and myosin filaments each have a specific and constant length on the order of a few micrometers, far less than the length of the elongated muscle cell (a few millimeters in the case of human skeletal muscle cells). The filaments are organized into repeated subunits along the length of the myofibril. These subunits are called
sarcomere A sarcomere (Greek σάρξ ''sarx'' "flesh", μέρος ''meros'' "part") is the smallest functional unit of striated muscle tissue. It is the repeating unit between two Z-lines. Skeletal striated muscle, Skeletal muscles are composed of tubular ...
s that are around three μm in length. The muscle cell is nearly filled with myofibrils running parallel to each other on the long axis of the cell. The sarcomeric subunits of one myofibril are in nearly perfect alignment with those of the myofibrils next to it. This alignment gives the cell its striped or striated appearance. Exposed muscle cells at certain angles, such as in meat cuts, can show structural coloration or
iridescence Iridescence (also known as goniochromism) is the phenomenon of certain surfaces that appear gradually to change colour as the angle of view or the angle of illumination changes. Iridescence is caused by wave interference of light in microstru ...
due to this periodic alignment of the fibrils and sarcomeres.


Appearance

The names of the various sub-regions of the sarcomere are based on their relatively lighter or darker appearance when viewed through the light microscope. Each sarcomere is delimited by two very dark colored bands called Z-discs or Z-lines (from the German ''zwischen'' meaning between). These Z-discs are dense protein discs that do not easily allow the passage of light. The
T-tubule T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells. With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permi ...
is present in this area. The area between the Z-discs is further divided into two lighter colored bands at either end called the I-bands or Isotropic Bands, and a darker, grayish band in the middle called the A band or Anisotropic Bands. The I bands appear lighter because these regions of the sarcomere mainly contain the thin actin filaments, whose smaller diameter allows the passage of light between them. The A band, on the other hand, contains mostly
myosin Myosins () are a Protein family, family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are adenosine triphosphate, ATP- ...
filaments whose larger diameter restricts the passage of light. A stands for
anisotropic Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
and I for
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
, referring to the optical properties of living muscle as demonstrated with polarized light microscopy. The parts of the A band that abut the I bands are occupied by both actin and myosin filaments (where they interdigitate as described above). Also within the A band is a relatively brighter central region called the H-zone (from the German ''helle'', meaning bright) in which there is no actin/myosin overlap when the muscle is in a relaxed state. Finally, the H-zone is bisected by a dark central line called the M-line (from the German ''mittel'' meaning middle).


Development

A study of the developing leg muscle in a 12-day chick embryo using electron microscopy proposes a mechanism for the development of myofibrils. Developing muscle cells contain thick (myosin) filaments that are 160–170 Å in diameter and thin (actin) filaments that are 60–70 Å in diameter. Young myofibres contain a 7:1 ratio of thin to thick filaments. Along the long axis of the muscle cells in sub sarcolemmal locations, free myofilaments become aligned and aggregate into hexagonally packed arrays. These aggregates form regardless of the presence of Z band or M band material. Aggregation occurs spontaneously because the tertiary structures of actin and myosin monomers contain all the "information" with the ionic strength and ATP concentration of the cell to aggregate into the filaments.


Function

The
myosin head The myosin head is the part of the thick myofilament made up of myosin that acts in muscle contraction, by sliding over thin myofilaments of actin. Myosin is the major component of the thick filaments and most myosin molecules are composed of a ...
s form cross bridges with the
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
myofilaments; this is where they carry out a 'rowing' action along the actin. When the muscle fibre is relaxed (before contraction), the myosin head has ADP and
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
bound to it. When a nerve impulse arrives, Ca2+ ions cause
troponin Troponin, or the troponin complex, is a complex of three regulatory proteins (troponin C, troponin I, and troponin T) that are integral to muscle contraction in skeletal muscle and cardiac muscle, but not smooth muscle. Measurements of cardiac-spe ...
to change shape; this moves the troponin + tropomyosin complex away, leaving the myosin binding sites open. The myosin head now binds to the actin myofilament. Energy in the head of the myosin myofilament moves the head, which slides the actin past; hence ADP is released. ATP presents itself (as the presence of the calcium ions activates the myosin's ATPase), and the myosin heads disconnect from the actin to grab the ATP. The ATP is then broken down into ADP and phosphate. Energy is released and stored in the myosin head to utilize for later movement. The myosin heads now return to their upright relaxed position. If calcium is present, the process is repeated. When a muscle contracts, the actin is pulled along myosin toward the center of the
sarcomere A sarcomere (Greek σάρξ ''sarx'' "flesh", μέρος ''meros'' "part") is the smallest functional unit of striated muscle tissue. It is the repeating unit between two Z-lines. Skeletal striated muscle, Skeletal muscles are composed of tubular ...
until the actin and myosin filaments are completely overlapped. The H zone becomes smaller and smaller due to the increasing overlap of actin and myosin filaments, and the muscle shortens. Thus when the muscle is fully contracted, the H zone is no longer visible. Note that the actin and myosin filaments themselves do not change length, but instead slide past each other. This is known as the sliding filament theory of muscle contraction.Marieb, E. N., Hoehn, K., & Hoehn, F. (2007). Human Anatomy & Physiology. (7th ed., pp. 284–87). San Francisco, California: Benjamin-Cummings Pub Co.


See also

* Cross-bridge cycle * Motor protein


References


External links


Muscle Physiology PrimerAnimation of sarcomere contraction
{{Authority control Eukaryotic cell anatomy Organelles Protein complexes