HOME

TheInfoList



OR:

In industrial
process engineering Process engineering is a field of study focused on the development and optimization of industrial processes. It consists of the understanding and application of the fundamental principles and laws of nature to allow humans to transform raw mate ...
, mixing is a
unit operation In chemical engineering and related fields, a unit operation is a basic step in a process. Unit operations involve a physical change or chemical transformation such as separation, crystallization, evaporation, filtration, polymerization, isomeriza ...
that involves manipulation of a
heterogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
physical system with the intent to make it more
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
. Familiar examples include
pump A pump is a device that moves fluids (liquids or gases), or sometimes Slurry, slurries, by mechanical action, typically converted from electrical energy into hydraulic or pneumatic energy. Mechanical pumps serve in a wide range of application ...
ing of the water in a swimming pool to homogenize the water temperature, and the stirring of
pancake A pancake, also known as a hotcake, griddlecake, or flapjack, is a flat type of batter bread like cake, often thin and round, prepared from a starch-based Batter (cooking), batter that may contain eggs, milk, and butter, and then cooked on a ...
batter to eliminate lumps (deagglomeration). Mixing is performed to allow heat and/or mass transfer to occur between one or more streams, components or phases. Modern industrial processing almost always involves some form of mixing.Ullmann, Fritz (2005). Ullmann's Chemical Engineering and Plant Design, Volumes 1–2. John Wiley & Sons. http://app.knovel.com/hotlink/toc/id:kpUCEPDV02/ullmanns-chemical-engineering Some classes of
chemical reactor A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in che ...
s are also mixers. With the right equipment, it is possible to mix a solid, liquid or gas into another solid, liquid or gas. A
biofuel Biofuel is a fuel that is produced over a short time span from Biomass (energy), biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricu ...
fermenter may require the mixing of microbes, gases and liquid medium for optimal yield; organic
nitration In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group () into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters () between Alcohol ...
requires concentrated (liquid) nitric and
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
s to be mixed with a
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
organic phase; production of pharmaceutical tablets requires blending of solid powders. The opposite of mixing is
segregation Segregation may refer to: Separation of people * Geographical segregation, rates of two or more populations which are not homogenous throughout a defined space * School segregation * Housing segregation * Racial segregation, separation of human ...
. A classical example of segregation is the
brazil nut effect Granular convection is a phenomenon where granular material subjected to shaking or vibration will exhibit circulation patterns similar to types of fluid convection. It is sometimes called the Brazil nut effect, when the largest of irregularly sh ...
. The mathematics of mixing is highly abstract, and is a part of
ergodic theory Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behav ...
, itself a part of
chaos theory Chaos theory is an interdisciplinary area of Scientific method, scientific study and branch of mathematics. It focuses on underlying patterns and Deterministic system, deterministic Scientific law, laws of dynamical systems that are highly sens ...
.


Mixing classification

The type of operation and equipment used during mixing depends on the state of materials being mixed (liquid, semi-solid, or solid) and the miscibility of the materials being processed. In this context, the act of mixing may be synonymous with stirring-, or
kneading In cooking (and more specifically baking), kneading is a process in the making of bread or dough, used to mix the ingredients and add strength to the final product. It allows the process of baking to be shortened by developing the gluten more qu ...
-processes.


Liquid–liquid mixing

Mixing of liquids occurs frequently in process engineering. The nature of liquids to blend determines the equipment used. Single-phase blending tends to involve low-shear, high-flow mixers to cause liquid engulfment, while multi-phase mixing generally requires the use of high-shear, low-flow mixers to create droplets of one liquid in laminar,
turbulent In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
or transitional flow regimes, depending on the
Reynolds number In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
of the flow. Turbulent or transitional mixing is frequently conducted with
turbine A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
s or
impeller An impeller, or impellor, is a driven rotor used to increase the pressure and flow of a fluid. It is the opposite of a turbine, which extracts energy from, and reduces the pressure of, a flowing fluid. Strictly speaking, propellers are a sub-clas ...
s; laminar mixing is conducted with helical ribbon or anchor mixers.


Single-phase blending

Mixing of liquids that are
miscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). Such substances are said to be miscible (etymologically ...
or at least
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
in each other occurs frequently in engineering (and in everyday life). An everyday example would be the addition of milk or cream to tea or coffee. Since both liquids are water-based, they dissolve easily in one another. The momentum of the liquid being added is sometimes enough to cause enough
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
to mix the two, since the
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of both liquids is relatively low. If necessary, a spoon or paddle could be used to complete the mixing process. Blending in a more viscous liquid, such as
honey Honey is a sweet and viscous substance made by several species of bees, the best-known of which are honey bees. Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of pl ...
, requires more mixing power per unit volume to achieve the same homogeneity in the same amount of time.


Gas–gas mixing


Solid–solid mixing

Dry blenders are a type of industrial mixer which are typically used to blend multiple dry components until they are
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
. Often minor liquid additions are made to the dry blend to modify the product formulation. Blending times using dry ingredients are often short (15–30 minutes) but are somewhat dependent upon the varying percentages of each component, and the difference in the bulk densities of each. Ribbon, paddle, tumble and vertical blenders are available. Many products including
pharmaceuticals Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
,
food Food is any substance consumed by an organism for Nutrient, nutritional support. Food is usually of plant, animal, or Fungus, fungal origin and contains essential nutrients such as carbohydrates, fats, protein (nutrient), proteins, vitamins, ...
s,
chemicals A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
,
fertilizer A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Man ...
s,
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s,
pigments A pigment is a powder used to add or alter color or change visual appearance. Pigments are completely or nearly solubility, insoluble and reactivity (chemistry), chemically unreactive in water or another medium; in contrast, dyes are colored sub ...
, and
cosmetics Cosmetics are substances that are intended for application to the body for cleansing, beautifying, promoting attractiveness, or altering appearance. They are mixtures of chemical compounds derived from either Natural product, natural source ...
are manufactured in these designs. Dry blenders range in capacity from half-cubic-foot
laboratory A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools ...
models to 500-cubic-foot production units. A wide variety of
horsepower Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are t ...
-and-speed combinations and optional features such as sanitary finishes, vacuum construction, special valves and cover openings are offered by most manufacturers. Blending powders is one of the oldest unit-operations in the solids handling industries. For many decades powder blending has been used just to homogenize bulk materials. Many different machines have been designed to handle materials with various bulk solids properties. On the basis of the practical experience gained with these different machines, engineering knowledge has been developed to construct reliable equipment and to predict scale-up and mixing behavior. Nowadays the same mixing technologies are used for many more applications: to improve product quality, to coat particles, to fuse materials, to wet, to disperse in liquid, to agglomerate, to alter functional material properties, etc. This wide range of applications of mixing equipment requires a high level of knowledge, long time experience and extended test facilities to come to the optimal selection of equipment and processes. Solid-solid mixing can be performed either in batch mixers, which is the simpler form of mixing, or in certain cases in continuous dry-mix, more complex but which provide interesting advantages in terms of segregation, capacity and validation. One example of a solid–solid mixing process is mulling foundry molding sand, where sand,
bentonite Bentonite ( ) is an Absorption (chemistry), absorbent swelling clay consisting mostly of montmorillonite (a type of smectite) which can either be Na-montmorillonite or Ca-montmorillonite. Na-montmorillonite has a considerably greater swelli ...
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
, fine coal dust and water are mixed to a
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
,
mold A mold () or mould () is one of the structures that certain fungus, fungi can form. The dust-like, colored appearance of molds is due to the formation of Spore#Fungi, spores containing Secondary metabolite#Fungal secondary metabolites, fungal ...
able and reusable mass, applied for molding and pouring molten metal to obtain sand castings that are metallic parts for automobile, machine building, construction or other industries.


Mixing mechanisms

In powder two different dimensions in the mixing process can be determined: convective mixing and intensive mixing. In the case of convective mixing material in the mixer is transported from one location to another. This type of mixing leads to a less ordered state inside the mixer, the components that must be mixed are distributed over the other components. With progressing time the mixture becomes more randomly ordered. After a certain mixing time the ultimate random state is reached. Usually this type of mixing is applied for free-flowing and coarse materials. Possible threats during macro mixing is the de-mixing of the components, since differences in size, shape or density of the different particles can lead to segregation. When materials are cohesive, which is the case with e.g. fine particles and also with wet material, convective mixing is no longer sufficient to obtain a randomly ordered mixture. The relative strong inter-particle forces form lumps, which are not broken up by the mild transportation forces in the convective mixer. To decrease the lump size additional forces are necessary; i.e. more energy intensive mixing is required. These additional forces can either be impact forces or shear forces.


Liquid–solid mixing

Liquid–solid mixing is typically done to suspend coarse free-flowing solids, or to break up lumps of fine agglomerated solids. An example of the former is the mixing granulated sugar into water; an example of the latter is the mixing of flour or powdered milk into water. In the first case, the particles can be lifted into suspension (and separated from one another) by bulk motion of the fluid; in the second, the mixer itself (or the high shear field near it) must destabilize the lumps and cause them to disintegrate. One example of a solid–liquid mixing process in industry is concrete mixing, where cement, sand, small stones or gravel and water are commingled to a
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
self-hardening
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
, used in the construction industry.


Solid suspension

Suspension of solids into a liquid is done to improve the rate of mass transfer between the solid and the liquid. Examples include dissolving a solid reactant into a solvent, or suspending catalyst particles in liquid to improve the flow of reactants and products to and from the particles. The associated
eddy diffusion In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov mic ...
increases the rate of mass transfer within the bulk of the fluid, and the convection of material away from the particles decreases the size of the
boundary layer In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
, where most of the resistance to mass transfer occurs. Axial-flow impellers are preferred for solid suspension because solid suspension needs momentum rather than shear, although radial-flow impellers can be used in a tank with baffles, which converts some of the rotational motion into vertical motion. When the solid is denser than the liquid (and therefore collects at the bottom of the tank), the impeller is rotated so that the fluid is pushed downwards; when the solid is less dense than the liquid (and therefore floats on top), the impeller is rotated so that the fluid is pushed upwards (though this is relatively rare). The equipment preferred for solid suspension produces large volumetric flows but not necessarily high shear; high flow-number turbine impellers, such as hydrofoils, are typically used. Multiple turbines mounted on the same shaft can reduce power draw. The degree of homogeneity of a solid-liquid suspension can be described by the RSD ( Relative Standard Deviation of the solid volume fraction field in the mixing tank). A perfect suspension would have a RSD of 0% but in practice, a RSD inferior or equal to 20% can be sufficient for the suspension to be considered homogeneous, although this is case-dependent. The RSD can be obtained by experimental measurements or by calculations. Measurements can be performed at full scale but this is generally unpractical, so it is common to perform measurements at small scale and use a "scale-up" criterion to extrapolate the RSD from small to full scale. Calculations can be performed using a
computational fluid dynamics Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid dynamics, fluid flows. Computers are used to perform the calculations required ...
software or by using
correlation In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
s built on theoretical developments, experimental measurements and/or computational fluid dynamics data. Computational fluid dynamics calculations are quite accurate and can accommodate virtually any tank and agitator designs, but they require expertise and long computation time. Correlations are easy to use but are less accurate and don't cover any possible designs. The most popular correlation is the ‘just suspended speed’ correlation published by Zwietering (1958). It's an easy to use correlation but it is not meant for homogeneous suspension. It only provides a crude estimate of the stirring speed for ‘bad’ quality suspensions (partial suspensions) where no particle remains at the bottom for more than 1 or 2 seconds. Another equivalent correlation is the correlation from Mersmann (1998). For ‘good’ quality suspensions, some examples of useful correlations can be found in the publications of Barresi (1987), Magelli (1991), Cekinski (2010) or Macqueron (2017).
Machine learning Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task ( ...
can also be used to build models way more accurate than "classical" correlations.


Solid deagglomeration

Very fine powders, such as
titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or Colour Index Internationa ...
pigments, and materials that have been spray dried may
agglomerate Agglomerate (from the Latin ''agglomerare'' meaning "to form into a ball") is a coarse accumulation of large blocks of volcanic material that contains at least 75% bombs. Volcanic bombs differ from volcanic blocks in that their shape records flui ...
or form lumps during transportation and storage. Starchy materials or those that form gels when exposed to solvent can form lumps that are wetted on the outside but dry on the inside. These types of materials are not easily mixed into liquid with the types of mixers preferred for solid suspension because the agglomerate particles must be subjected to intense shear to be broken up. In some ways, deagglomeration of solids is similar to the blending of immiscible liquids, except for the fact that coalescence is usually not a problem. An everyday example of this type of mixing is the production of
milkshake A milkshake (sometimes simply called a shake) is a sweet beverage made by blending milk, ice cream, and flavorings or sweeteners such as butterscotch, caramel sauce, chocolate syrup, or fruit syrup into a thick, sweet, cold mixture. It may ...
s from liquid milk and solid ice cream.


Liquid–gas mixing

Liquids and gases are typically mixed to allow
mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtra ...
to occur. For instance, in the case of
air stripping Air stripping is the transferring of volatile components of a liquid into an air stream. It is an environmental engineering technology used for the purification of groundwaters and wastewaters containing volatile compounds. Volatile compounds ha ...
, gas is used to remove volatiles from a liquid. Typically, a packed column is used for this purpose, with the packing acting as a motionless mixer and the air pump providing the driving force. When a tank and impeller are used, the objective is typically to ensure that the gas bubbles remain in contact with the liquid for as long as possible. This is especially important if the gas is expensive, such as pure
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, or diffuses slowly into the liquid. Mixing in a tank is also useful when a (relatively) slow chemical reaction is occurring in the liquid phase, and so the concentration difference in the thin layer near the bubble is close to that of the bulk. This reduces the driving force for mass transfer. If there is a (relatively) fast chemical reaction in the liquid phase, it is sometimes advantageous to disperse but not recirculate the gas bubbles, ensuring that they are in
plug flow In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. ...
and can transfer mass more efficiently. Rushton turbines have been traditionally used to disperse gases into liquids, but newer options, such as the Smith turbine and Bakker turbine are becoming more prevalent. One of the issues is that as the gas flow increases, more and more of the gas accumulates in the low pressure zones behind the impeller blades, which reduces the power drawn by the mixer (and therefore its effectiveness). Newer designs, such as the GDX impeller, have nearly eliminated this problem.


Gas–solid mixing

Gas–solid mixing may be conducted to transport powders or small particulate solids from one place to another, or to mix gaseous reactants with solid catalyst particles. In either case, the turbulent eddies of the gas must provide enough force to suspend the solid particles, which otherwise sink under the force of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
. The size and shape of the particles is an important consideration, since different particles have different drag coefficients, and particles made of different materials have different densities. A common unit operation the process industry uses to separate gases and solids is the
cyclone In meteorology, a cyclone () is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an ant ...
, which slows the gas and causes the particles to settle out.


Multiphase mixing

Multiphase mixing occurs when solids, liquids and gases are combined in one step. This may occur as part of a catalytic chemical process, in which liquid and gaseous reagents must be combined with a solid catalyst (such as
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or Saturated ...
); or in fermentation, where solid microbes and the gases they require must be well-distributed in a liquid medium. The type of mixer used depends upon the properties of the phases. In some cases, the mixing power is provided by the gas itself as it moves up through the liquid, entraining liquid with the bubble plume. This draws liquid upwards inside the plume, and causes liquid to fall outside the plume. If the viscosity of the liquid is too high to allow for this (or if the solid particles are too heavy), an impeller may be needed to keep the solid particles suspended.


Basic nomenclature

For liquid mixing, the nomenclature is rather standardized: * Impeller Diameter, "D" is measured for industrial mixers as the maximum diameter swept around the axis of rotation. * Rotational Speed, "N" is usually measured in revolutions per minute (RPM) or revolutions per second (RPS). This variable refers to the rotational speed of the impeller as this number can differ along points of the drive train. * Tank Diameter, "T" The inside diameter of a cylindrical vessel. Most mixing vessels receiving industrial mixers will be cylindrical. * Power, "P" Is the energy input into a system usually by an
electric motor An electric motor is a machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a electromagnetic coil, wire winding to gene ...
or a
pneumatic motor A pneumatic motor (air motor), or compressed-air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed-air energy to mechanical work through either linear or rotary ...
* Impeller Pumping Capacity, "Q" The resulting fluid motion from impeller rotation.


Constitutive equations

Many of the equations used for determining the output of mixers are empirically derived, or contain empirically derived constants. Since mixers operate in the turbulent regime, many of the equations are approximations that are considered acceptable for most engineering purposes. When a mixing impeller rotates in the fluid, it generates a combination of flow and shear. The impeller generated flow can be calculated with the following equation: Q = Fl*N*D^3 Flow numbers for impellers have been published in the North American Mixing Forum sponsored Handbook of Industrial Mixing. The power required to rotate an impeller can be calculated using the following equations: P= P_\rho N^3D^5 (Turbulent regime) P= K_p\mu N^2D^3 (Laminar regime) P_ is the (dimensionless) power number, which is a function of impeller geometry; \rho is the density of the fluid; N is the rotational speed, typically rotations per second; D is the diameter of the impeller; K_p is the laminar power constant; and \mu is the viscosity of the fluid. Note that the mixer power is strongly dependent upon the rotational speed and impeller diameter, and linearly dependent upon either the density or viscosity of the fluid, depending on which flow regime is present. In the transitional regime, flow near the impeller is turbulent and so the turbulent power equation is used. The time required to blend a fluid to within 5% of the final concentration, , can be calculated with the following correlations: = \frac (\frac )^2 (Turbulent regime) = \frac (\frac ) (\frac )^2 (Transitional region) = \frac (Laminar regime) The Transitional/Turbulent boundary occurs at P_^ Re = 6404 The Laminar/Transitional boundary occurs at P_^ Re = 186


Laboratory mixing

At a laboratory scale, mixing is achieved by
magnetic stirrer A magnetic stirrer or magnetic mixer is a laboratory device that employs a rotating magnetic field to cause a stir bar (or ''flea'') immersed in a liquid to spin very quickly, thus stirring it. The rotating field may be created either by a rota ...
s or by simple hand-shaking. Sometimes mixing in laboratory vessels is more thorough and occurs faster than is possible industrially. Magnetic stir bars are radial-flow mixers that induce solid body rotation in the fluid being mixed. This is acceptable on a small scale, since the vessels are small and mixing therefore occurs rapidly (short blend time). A variety of stir bar configurations exist, but because of the small size and (typically) low viscosity of the fluid, it is possible to use one configuration for nearly all mixing tasks. The cylindrical stir bar can be used for suspension of solids, as seen in iodometry, deagglomeration (useful for preparation of microbiology
growth medium A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss ''Physcomitrella patens''. Differe ...
from powders), and liquid–liquid blending. Another peculiarity of laboratory mixing is that the mixer rests on the bottom of the vessel instead of being suspended near the center. Furthermore, the vessels used for laboratory mixing are typically more widely varied than those used for industrial mixing; for instance,
Erlenmeyer flask An Erlenmeyer flask, also known as a conical flask (British English) or a titration flask, is a type of laboratory flask with a flat bottom, a conical body, and a cylindrical neck. It is named after the German chemist Emil Erlenmeyer (1825–190 ...
s, or Florence flasks may be used in addition to the more cylindrical beaker.


Mixing in microfluidics

When scaled down to the microscale, fluid mixing behaves radically different. This is typically at sizes from a couple (2 or 3) millimeters down to the nanometer range. At this size range normal
advection In the fields of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is a ...
does not happen unless it is forced by a hydraulic pressure gradient.
Diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
is the dominant mechanism whereby two different fluids come together. Diffusion is a relatively slow process. Hence a number of researchers had to devise ways to get the two fluids to mix. This involved Y junctions, T junctions, three-way intersections and designs where the interfacial area between the two fluids is maximized. Beyond just interfacing the two liquids people also made twisting channels to force the two fluids to mix. These included multilayered devices where the fluids would corkscrew, looped devices where the fluids would flow around obstructions and wavy devices where the channel would constrict and flare out. Additionally channels with features on the walls like notches or groves were tried. One way to know if mixing is happening due to advection or diffusion is by finding the Peclet number. It is the ratio of
advection In the fields of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is a ...
to
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
. At high Peclet numbers (> 1), advection dominates. At low Peclet numbers (< 1), diffusion dominates.


Industrial mixing equipment

At an industrial scale, efficient mixing can be difficult to achieve. A great deal of engineering effort goes into designing and improving mixing processes. Mixing at industrial scale is done in batches (dynamic mixing), inline or with help of
static mixer A static mixer is a device for the continuous mixing of fluid materials, without moving components. Normally the fluids to be mixed are liquid, but static mixers can also be used to mix gas streams, disperse gas into liquid or blend immiscible ...
s. Moving mixers are powered with
electric motor An electric motor is a machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a electromagnetic coil, wire winding to gene ...
s that operate at standard speeds of 1800 or 1500 RPM, which is typically much faster than necessary.
Gearbox A transmission (also called a gearbox) is a mechanical device invented by Louis Renault (who founded Renault) which uses a gear set—two or more gears working together—to change the speed, direction of rotation, or torque multiplication/r ...
es are used to reduce speed and increase torque. Some applications require the use of multi-shaft mixers, in which a combination of mixer types are used to completely blend the product. In addition to performing typical batch mixing operations, some mixing can be done continuously. Using a machine like the Continuous Processor, one or more dry ingredients and one or more liquid ingredients can be accurately and consistently metered into the machine and see a continuous, homogeneous mixture come out the discharge of the machine. Many industries have converted to continuous mixing for many reasons. Some of those are ease of cleaning, lower energy consumption, smaller footprint, versatility, control, and many others. Continuous mixers, such as the twin-screw Continuous Processor, also have the ability to handle very high viscosities.


Turbines

A selection of turbine geometries and power numbers are shown below. Different types of impellers are used for different tasks; for instance, Rushton turbines are useful for dispersing gases into liquids, but are not very helpful for dispersing settled solids into liquid. Newer turbines have largely supplanted the Rushton turbine for gas–liquid mixing, such as the Smith turbine and Bakker turbine. The power number is an empirical measure of the amount of torque needed to drive different impellers in the same fluid at constant power per unit volume; impellers with higher power numbers require more torque but operate at lower speed than impellers with lower power numbers, which operate at lower torque but higher speeds.


Planetary mixer

A ''planetary mixer'' is a device used to mix round products including
adhesive Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation. The use of adhesives offers certain advantage ...
s,
pharmaceuticals Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
,
food Food is any substance consumed by an organism for Nutrient, nutritional support. Food is usually of plant, animal, or Fungus, fungal origin and contains essential nutrients such as carbohydrates, fats, protein (nutrient), proteins, vitamins, ...
s (including
dough Dough is a malleable, sometimes elastic paste made from flour (which itself is made from grains or from leguminous or chestnut crops). Dough is typically made by mixing flour with a small amount of water or other liquid and sometimes includes ...
),
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
s, solid rocket propellants,
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
,
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s and
pigment A pigment is a powder used to add or alter color or change visual appearance. Pigments are completely or nearly solubility, insoluble and reactivity (chemistry), chemically unreactive in water or another medium; in contrast, dyes are colored sub ...
s. Planetary mixers are ideal for mixing and
kneading In cooking (and more specifically baking), kneading is a process in the making of bread or dough, used to mix the ingredients and add strength to the final product. It allows the process of baking to be shortened by developing the gluten more qu ...
viscous pastes (up to 6 million
centipoise The poise (symbol P; ) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = ...
) under atmospheric or vacuum conditions. Capacities range from through . Many options including jacketing for heating or cooling,
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
or pressure, vari speed drives, etc. are available. Planetary blades each rotate on their own
axes Axes, plural of ''axe'' and of ''axis'', may refer to * ''Axes'' (album), a 2005 rock album by the British band Electrelane * a possibly still empty plot (graphics) See also * Axis (disambiguation) An axis (: axes) may refer to: Mathematics ...
, and at the same time on a common axis, thereby providing complete mixing in a very short timeframe. Large industrial scale planetary mixers are used in the production of solid rocket fuel for long-range
ballistic missile A ballistic missile is a type of missile that uses projectile motion to deliver warheads on a target. These weapons are powered only during relatively brief periods—most of the flight is unpowered. Short-range ballistic missiles (SRBM) typic ...
s. They are used to blend and homgenize the components of solid rocket propellant, ensuring a consistent and stable mixture of fuel & oxidizer.


Resonant acoustic mixer

Resonant acoustic mixing (RAM) is able to mix, coat, mill, and sieve materials without impellers or blades touching the materials, yet typically 10X-100X faster than alternative technologies by generating a high level of energy (up to 100 g) through seeking and operating at the resonant condition of the mechanical system - at all times. Resonant acoustic mixers from lab scale to industrial production to continuous mixing are used for energetic materials like
explosive An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An ex ...
s,
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicle ...
s, and
pyrotechnic composition A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic reaction, exothermic chemical reac ...
s, as well as
pharmaceuticals Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
,
powder metallurgy Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes are sometimes used to reduce or eliminate the need for subtractive manufacturing, subtractive processes in ma ...
,
3D printing 3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
,
rechargeable battery A rechargeable battery, storage battery, or secondary cell (formally a type of energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or prima ...
materials, and
battery recycling Battery recycling is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. Batteries contain a number of heavy metals and toxic chemicals and disposing of them by the same process as regula ...
.


Close-clearance mixers

There are two main types of close-clearance mixers: anchors and helical ribbons. Anchor mixers induce solid-body rotation and do not promote vertical mixing, but helical ribbons do. Close clearance mixers are used in the laminar regime, because the viscosity of the fluid overwhelms the inertial forces of the flow and prevents the fluid leaving the impeller from entraining the fluid next to it. Helical ribbon mixers are typically rotated to push material at the wall downwards, which helps circulate the fluid and refresh the surface at the wall.


High shear dispersers

High shear dispersers create intense shear near the impeller but relatively little flow in the bulk of the vessel. Such devices typically resemble
circular saw A circular saw or a buzz saw, is a power-saw using a toothed or Abrasive saw, abrasive disk (mathematics), disc or blade to cut different materials using a rotary motion spinning around an Arbor (tool), arbor. A hole saw and ring saw also use ...
blades and are rotated at high speed. Because of their shape, they have a relatively low drag coefficient and therefore require comparatively little torque to spin at high speed. High shear dispersers are used for forming emulsions (or suspensions) of immiscible liquids and solid deagglomeration.


Static mixers

Static mixers are used when a mixing tank would be too large, too slow, or too expensive to use in a given process.


Liquid whistles

Liquid whistles are a kind of
static mixer A static mixer is a device for the continuous mixing of fluid materials, without moving components. Normally the fluids to be mixed are liquid, but static mixers can also be used to mix gas streams, disperse gas into liquid or blend immiscible ...
which pass fluid at high pressure through an orifice and subsequently over a blade. This subjects the fluid to high
turbulent In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
stresses and may result in mixing,
emulsification An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although ...
, deagglomeration and disinfection.


Other

*Ribbon Blender *:Ribbon blenders are very common in process industries for performing dry-mixing operations. The mixing is performed thanks to 2 helix (ribbon) welded on the shafts. Both helix move the product in opposite directions thus achieving the mixing (see picture of ribbon blender). *V Blender *Twin-Screw Continuous Blender *Continuous Processor *Cone Screw Blender *Screw Blender *Double Cone Blender *Double Planetary *
High Viscosity Mixer High viscosity mixers are mixers designed for mixing materials with laminar mixing processes because the ingredients have such high viscosities that a turbulent mixing phase cannot be obtained at all or cannot be obtained without a high amount ...
*Counter-rotating *Double & Triple Shaft *Vacuum Mixer *High Shear Rotor Stator * Impinging mixer *Dispersion Mixers *Paddle *Jet Mixer *Mobile Mixers *Drum Blenders *Intermix mixer *Horizontal Mixer *Hot/Cold mixing combination *Vertical mixer * Turbomixer *Banbury mixer *:The ''Banbury mixer'' is a
brand A brand is a name, term, design, symbol or any other feature that distinguishes one seller's goods or service from those of other sellers. Brands are used in business, marketing, and advertising for recognition and, importantly, to create and ...
of internal batch mixer, named for inventor Fernley H. Banbury. The "Banbury" trademark is owned by Farrel Corporation. Internal batch mixers such as the Banbury mixer are used for mixing or compounding
rubber Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds. Types of polyisoprene ...
and plastics. The original design dates back to 1916. The mixer consists of two rotating
spiral In mathematics, a spiral is a curve which emanates from a point, moving further away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects. Two-dimensional A two-dimension ...
-shaped blades encased in segments of cylindrical housings. These intersect so as to leave a ridge between the blades. The blades may be cored for circulation of heating or cooling. Its invention resulted in major labor and capital savings in the tire industry, doing away with the initial step of roller-milling rubber. It is also used for reinforcing fillers in a resin system.


See also

*
Mixing paddle A mixing paddle is a shaped device, typically mounted on a shaft, which can be inserted on the shaft end into a motorised drive, for the purpose of mixing liquids, solids or both. Paddle mixers may also be used for kneading. Whilst mounted in fixe ...


References


Further reading


Dry Blender Selection Criteria Technical Paper


External links


Wiki on equipment for mixing bulk solids and powders






{{DEFAULTSORT:Mixing (Process Engineering) Unit operations Industrial machinery Plastics industry Rotating machines