
The Michelson–Morley experiment was an attempt to measure the motion of the
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
relative to the
luminiferous aether
Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
,
a supposed medium permeating space that was thought to be the carrier of
light waves. The experiment was performed between April and July 1887 by American physicists
Albert A. Michelson and
Edward W. Morley at what is now
Case Western Reserve University
Case Western Reserve University (CWRU) is a Private university, private research university in Cleveland, Ohio, United States. It was established in 1967 by a merger between Western Reserve University and the Case Institute of Technology. Case ...
in
Cleveland
Cleveland is a city in the U.S. state of Ohio and the county seat of Cuyahoga County. Located along the southern shore of Lake Erie, it is situated across the Canada–U.S. maritime border and approximately west of the Ohio-Pennsylvania st ...
, Ohio, and published in November of the same year.
[
The experiment compared the ]speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
in perpendicular directions in an attempt to detect the relative motion of matter, including their laboratory, through the luminiferous aether, or "aether wind" as it was sometimes called. The result was negative, in that Michelson and Morley found no significant difference between the speed of light in the direction of movement through the presumed aether, and the speed at right angles. This result is generally considered to be the first strong evidence against some aether theories
In the history of physics, aether theories (or ether theories) proposed the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of ...
, as well as initiating a line of research that eventually led to special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
, which rules out motion against an aether.[ Of this experiment, ]Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
wrote, "If the Michelson–Morley experiment had not brought us into serious embarrassment, no one would have regarded the relativity theory as a (halfway) redemption."
Michelson–Morley type experiments have been repeated many times with steadily increasing sensitivity. These include experiments from 1902 to 1905, and a series of experiments in the 1920s. More recently, in 2009, optical resonator experiments confirmed the absence of any aether wind at the 10−17 level. Together with the Ives–Stilwell and Kennedy–Thorndike experiments, Michelson–Morley type experiments form one of the fundamental tests of special relativity.
Detecting the aether
Physics theories of the 19th century assumed that just as surface water waves must have a supporting substance, i.e., a "medium", to move across (in this case water), and audible sound
In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid.
In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the br ...
requires a medium to transmit its wave motions (such as air or water), so light must also require a medium, the "luminiferous aether
Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
", to transmit its wave motions. Because light can travel through a vacuum, it was assumed that even a vacuum must be filled with aether. Because the speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
is so great, and because material bodies pass through the ''aether'' without obvious friction or drag, it was assumed to have a highly unusual combination of properties. Designing experiments to investigate these properties was a high priority of 19th-century physics.
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
orbits around the Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
at a speed of around , or . The Earth is in motion, so two main possibilities were considered: (1) The aether is stationary and only partially dragged by Earth (proposed by Augustin-Jean Fresnel
Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Isaac Newton, Newton's c ...
in 1818), or (2) the aether is completely dragged by Earth and thus shares its motion at Earth's surface (proposed by Sir George Stokes, 1st Baronet in 1844). In addition, James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
(1865) recognized the electromagnetic
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
nature of light and developed what are now called Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
, but these equations were still interpreted as describing the motion of waves through an aether, whose state of motion was unknown. Eventually, Fresnel's idea of an (almost) stationary aether was preferred because it appeared to be confirmed by the Fizeau experiment (1851) and the aberration of star light.
According to the stationary and the partially dragged aether hypotheses, Earth and the aether are in relative motion, implying that a so-called "aether wind" (Fig. 2) should exist. Although it would be theoretically possible for the Earth's motion to match that of the aether at one moment in time, it was not possible for the Earth to remain at rest with respect to the aether at all times, because of the variation in both the direction and the speed of the motion. At any given point on the Earth's surface, the magnitude and direction of the wind would vary with time of day and season. By analyzing the return speed of light in different directions at various different times, it was thought to be possible to measure the motion of the Earth relative to the aether. The expected relative difference in the measured speed of light was quite small, given that the velocity of the Earth in its orbit around the Sun has a magnitude of about one hundredth of one percent of the speed of light.
During the mid-19th century, measurements of aether wind effects of first order, i.e., effects proportional to ''v''/''c'' (''v'' being Earth's velocity, ''c'' the speed of light) were thought to be possible, but no direct measurement of the speed of light was possible with the accuracy required. For instance, the Fizeau wheel
From 1848 to 1849, Hippolyte Fizeau used a toothed wheel apparatus to perform absolute measurements of the speed of light in air.
Subsequent experiments performed by Marie Alfred Cornu from 1872 to 1876 improved the methodology and made more acc ...
could measure the speed of light to perhaps 5% accuracy, which was quite inadequate for measuring directly a first-order 0.01% change in the speed of light. A number of physicists therefore attempted to make measurements of indirect first-order effects not of the speed of light itself, but of variations in the speed of light (see First order aether-drift experiments). The Hoek experiment, for example, was intended to detect interferometric fringe shifts due to speed differences of oppositely propagating light waves through water at rest. The results of such experiments were all negative. This could be explained by using Fresnel's dragging coefficient, according to which the aether and thus light are partially dragged by moving matter. Partial aether-dragging would thwart attempts to measure any first order change in the speed of light. As pointed out by Maxwell (1878), only experimental arrangements capable of measuring second order effects would have any hope of detecting aether drift, i.e., effects proportional to ''v''2/''c''2. Existing experimental setups, however, were not sensitive enough to measure effects of that size.
1881 and 1887 experiments
Michelson experiment (1881)
Michelson had a solution to the problem of how to construct a device sufficiently accurate to detect aether flow. In 1877, while teaching at his alma mater, the United States Naval Academy
The United States Naval Academy (USNA, Navy, or Annapolis) is a United States Service academies, federal service academy in Annapolis, Maryland. It was established on 10 October 1845 during the tenure of George Bancroft as United States Secre ...
in Annapolis, Michelson conducted his first known light speed experiments as a part of a classroom demonstration. In 1881, he left active U.S. Naval service while in Germany concluding his studies. In that year, Michelson used a prototype experimental device to make several more measurements.
The device he designed, later known as a Michelson interferometer
The Michelson interferometer is a common configuration for optical interferometry and was invented by the American physicist Albert Abraham Michelson in 1887. Using a beam splitter, a light source is split into two arms. Each of those light be ...
, sent yellow
Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In t ...
light from a sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
flame (for alignment), or white
White is the lightest color and is achromatic (having no chroma). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully (or almost fully) reflect and scatter all the visible wa ...
light (for the actual observations), through a half-silvered mirror that was used to split it into two beams traveling at right angles to one another. After leaving the splitter, the beams traveled out to the ends of long arms where they were reflected back into the middle by small mirrors. They then recombined on the far side of the splitter in an eyepiece, producing a pattern of constructive and destructive interference
Interference is the act of interfering, invading, or poaching. Interference may also refer to:
Communications
* Interference (communication), anything which alters, modifies, or disrupts a message
* Adjacent-channel interference, caused by extra ...
whose transverse displacement would depend on the relative time it takes light to transit the longitudinal ''vs.'' the transverse arms. If the Earth is traveling through an aether medium, a light beam traveling parallel to the flow of that aether will take longer to reflect back and forth than would a beam traveling perpendicular to the aether, because the increase in elapsed time from traveling against the aether wind is more than the time saved by traveling with the aether wind. Michelson expected that the Earth's motion would produce a fringe shift equal to 0.04 fringes—that is, of the separation between areas of the same intensity. He did not observe the expected shift; the greatest average deviation that he measured (in the northwest direction) was only 0.018 fringes; most of his measurements were much less. His conclusion was that Fresnel's hypothesis of a stationary aether with partial aether dragging would have to be rejected, and thus he confirmed Stokes' hypothesis of complete aether dragging.[
However, Alfred Potier (and later ]Hendrik Lorentz
Hendrik Antoon Lorentz ( ; ; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for their discovery and theoretical explanation of the Zeeman effect. He derive ...
) pointed out to Michelson that he had made an error of calculation, and that the expected fringe shift should have been only 0.02 fringes. Michelson's apparatus was subject to experimental errors far too large to say anything conclusive about the aether wind. Definitive measurement of the aether wind would require an experiment with greater accuracy and better controls than the original. Nevertheless, the prototype was successful in demonstrating that the basic method was feasible.
Michelson–Morley experiment (1887)
In 1885, Michelson began a collaboration with Edward Morley, spending considerable time and money to confirm with higher accuracy Fizeau's 1851 experiment on Fresnel's drag coefficient, to improve on Michelson's 1881 experiment, and to establish the wavelength of light as a standard of length. John Brashear made the high-quality optics for the Interferometer in his Allegheny-Observatory-affiliated shop. At this time Michelson was professor of physics at the Case School of Applied Science, and Morley was professor of chemistry at Western Reserve University (WRU), which shared a campus with the Case School on the eastern edge of Cleveland. Michelson suffered a mental health crisis in September 1885, from which he recovered by October 1885. Morley ascribed this breakdown to the intense work of Michelson during the preparation of the experiments. In 1886, Michelson and Morley successfully confirmed Fresnel's drag coefficient – this result was also considered as a confirmation of the stationary aether concept.
This result strengthened their hope of finding the aether wind. Michelson and Morley created an improved version of the Michelson experiment with more than enough accuracy to detect this hypothetical effect. The experiment was performed in several periods of concentrated observations between April and July 1887, in the basement of Adelbert Dormitory of WRU (later renamed Pierce Hall, demolished in 1962).
As shown in the diagram to the right, the light was repeatedly reflected back and forth along the arms of the interferometer, increasing the path length to . At this length, the drift would be about 0.4 fringes. To make that easily detectable, the apparatus was assembled in a closed room in the basement of the heavy stone dormitory, eliminating most thermal and vibrational effects. Vibrations were further reduced by building the apparatus on top of a large block of sandstone (Fig. 1), about a foot thick and square, which was then floated in a circular trough of mercury. They estimated that effects of about 0.01 fringe would be detectable.
Michelson and Morley and other early experimentalists using interferometric techniques in an attempt to measure the properties of the luminiferous aether, used (partially) monochromatic light only for initially setting up their equipment, always switching to white light for the actual measurements. The reason is that measurements were recorded visually. Purely monochromatic light would result in a uniform fringe pattern. Lacking modern means of environmental temperature control, experimentalists struggled with continual fringe drift even when the interferometer was set up in a basement. Because the fringes would occasionally disappear due to vibrations caused by passing horse traffic, distant thunderstorms and the like, an observer could easily "get lost" when the fringes returned to visibility. The advantages of white light, which produced a distinctive colored fringe pattern, far outweighed the difficulties of aligning the apparatus due to its low coherence length. As Dayton Miller wrote, "White light fringes were chosen for the observations because they consist of a small group of fringes having a central, sharply defined black fringe which forms a permanent zero reference mark for all readings."[If one uses a half-silvered mirror as the beam splitter, the reflected beam will undergo a different number of front-surface reflections than the transmitted beam. At each front-surface reflection, the light will undergo a phase inversion. Because the two beams undergo a different number of phase inversions, when the path lengths of the two beams match or differ by an integral number of wavelengths (e.g. 0, 1, 2 ...), there will be destructive interference and a weak signal at the detector. If the path lengths of the beams differ by a half-integral number of wavelengths (e.g., 0.5, 1.5, 2.5 ...), constructive interference will yield a strong signal. The results are opposite if a cube beam-splitter is used, because a cube beam-splitter makes no distinction between a front- and rear-surface reflection.] Use of partially monochromatic light (yellow sodium light) during initial alignment enabled the researchers to locate the position of equal path length, more or less easily, before switching to white light.[Sodium light produces a fringe pattern that displays cycles of fuzziness and sharpness that repeat every several hundred fringes over a distance of approximately a millimeter. This pattern is due to the yellow sodium D line being actually a doublet, the individual lines of which have a limited coherence length. After aligning the interferometer to display the centermost portion of the sharpest set of fringes, the researcher would switch to white light.]
The mercury trough allowed the device to turn with close to zero friction, so that once having given the sandstone block a single push it would slowly rotate through the entire range of possible angles to the "aether wind", while measurements were continuously observed by looking through the eyepiece. The hypothesis of aether drift implies that because one of the arms would inevitably turn into the direction of the wind at the same time that another arm was turning perpendicularly to the wind, an effect should be noticeable even over a period of minutes.
The expectation was that the effect would be graphable as a sine wave with two peaks and two troughs per rotation of the device. This result could have been expected because during each full rotation, each arm would be parallel to the wind twice (facing into and away from the wind giving identical readings) and perpendicular to the wind twice. Additionally, due to the Earth's rotation, the wind would be expected to show periodic changes in direction and magnitude during the course of a sidereal day
Sidereal time ("sidereal" pronounced ) is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky. Sidereal t ...
.
Because of the motion of the Earth around the Sun, the measured data were also expected to show annual variations.
Most famous "failed" experiment
After all this thought and preparation, the experiment became what has been called the most famous failed experiment in history. Instead of providing insight into the properties of the aether, Michelson and Morley's article in the '' American Journal of Science'' reported the measurement to be as small as one-fortieth of the expected displacement (Fig. 7), but "since the displacement is proportional to the square of the velocity" they concluded that the measured velocity was "probably less than one-sixth" of the expected velocity of the Earth's motion in orbit and "certainly less than one-fourth". Although this small "velocity" was measured, it was considered far too small to be used as evidence of speed relative to the aether, and it was understood to be within the range of an experimental error that would allow the speed to actually be zero. For instance, Michelson wrote about the "decidedly negative result" in a letter to Lord Rayleigh in August 1887:
From the standpoint of the then current aether models, the experimental results were conflicting. The Fizeau experiment and its 1886 repetition by Michelson and Morley apparently confirmed the stationary aether with partial aether dragging, and refuted complete aether dragging. On the other hand, the much more precise Michelson–Morley experiment (1887) apparently confirmed complete aether dragging and refuted the stationary aether. In addition, the Michelson–Morley null result was further substantiated by the null results of other second-order experiments of different kind, namely the Trouton–Noble experiment (1903) and the experiments of Rayleigh and Brace (1902–1904). These problems and their solution led to the development of the Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant vel ...
and special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
.
After the "failed" experiment Michelson and Morley ceased their aether drift measurements and started to use their newly developed technique to establish the wavelength of light as a standard of length.
Light path analysis and consequences
Observer resting in the aether
The beam travel time in the longitudinal direction can be derived as follows: Light is sent from the source and propagates with the speed of light in the aether. It passes through the half-silvered mirror at the origin at . The reflecting mirror is at that moment at distance (the length of the interferometer arm) and is moving with velocity . The beam hits the mirror at time and thus travels the distance . At this time, the mirror has traveled the distance . Thus and consequently the travel time . The same consideration applies to the backward journey, with the sign of reversed, resulting in and . The total travel time is:
:
Michelson obtained this expression correctly in 1881, however, in transverse direction he obtained the incorrect expression
:
because he overlooked the increase in path length in the rest frame of the aether. This was corrected by Alfred Potier (1882) and Hendrik Lorentz
Hendrik Antoon Lorentz ( ; ; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for their discovery and theoretical explanation of the Zeeman effect. He derive ...
(1886). The derivation in the transverse direction can be given as follows (analogous to the derivation of time dilation
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unsp ...
using a light clock): The beam is propagating at the speed of light and hits the mirror at time , traveling the distance . At the same time, the mirror has traveled the distance in the ''x'' direction. So in order to hit the mirror, the travel path of the beam is in the ''y'' direction (assuming equal-length arms) and in the ''x'' direction. This inclined travel path follows from the transformation from the interferometer rest frame to the aether rest frame. Therefore, the Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
gives the actual beam travel distance of . Thus and consequently the travel time , which is the same for the backward journey. The total travel time is:
:
The time difference between and is given by
:
To find the path difference, simply multiply by ;
The path difference is denoted by because the beams are out of phase by a some number of wavelengths (). To visualise this, consider taking the two beam paths along the longitudinal and transverse plane, and lying them straight (an animation of this is shown at minute 11:00, The Mechanical Universe, episode 41). One path will be longer than the other, this distance is . Alternatively, consider the rearrangement of the speed of light formula .
If the relation is true (if the velocity of the aether is small relative to the speed of light), then the expression can be simplified using a first order binomial expansion;
So, rewriting the above in terms of powers;
Applying binomial simplification;[Extract of page 1117]
/ref>
Therefore;
The derivation above shows that the presence of an aether wind would produce a difference in optical path lengths between the two arms of the interferometer. This path difference depends on the orientation of the interferometer relative to the aether wind. Specifically, the derivation assumes that the longitudinal arm is aligned parallel to the presumed direction of the aether wind. If instead the longitudinal arm is oriented perpendicular to the aether wind, the resulting path difference would have the opposite sign.
The magnitude of the path difference can vary continuously and may represent any fraction of the wavelength, depending on both the angle between the apparatus and the aether wind and the wind's speed.
To detect the existence of the aether, Michelson and Morley aimed to observe a "fringe shift" in the interference pattern. The underlying principle is straightforward: when the interferometer is rotated by 90°, the roles of the two arms are exchanged, altering the path difference due to the aether wind. The fringe shift is determined by calculating the difference in path differences between the two orientations, and then dividing that value by the wavelength.
:
Note the difference between , which is some number of wavelengths, and which is a single wavelength. As can be seen by this relation, fringe shift n is a unitless quantity.
Since ''L'' ≈ 11 meters and λ ≈ 500 nanometer
330px, Different lengths as in respect to the Molecule">molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling
Despite the va ...
s, the expected fringe shift was ''n'' ≈ 0.44. The negative result led Michelson to the conclusion that there is no measurable aether drift. However, he never accepted this on a personal level, and the negative result haunted him for the rest of his life.
Observer comoving with the interferometer
If the same situation is described from the view of an observer co-moving with the interferometer, then the effect of aether wind is similar to the effect experienced by a swimmer, who tries to move with velocity against a river flowing with velocity .
In the longitudinal direction the swimmer first moves upstream, so his velocity is diminished due to the river flow to . On his way back moving downstream, his velocity is increased to . This gives the beam travel times and as mentioned above.
In the transverse direction, the swimmer has to compensate for the river flow by moving at a certain angle against the flow direction, in order to sustain his exact transverse direction of motion and to reach the other side of the river at the correct location. This diminishes his speed to , and gives the beam travel time as mentioned above.
Mirror reflection
The classical analysis predicted a relative phase shift between the longitudinal and transverse beams which in Michelson and Morley's apparatus should have been readily measurable. What is not often appreciated (since there was no means of measuring it), is that motion through the hypothetical aether should also have caused the two beams to diverge as they emerged from the interferometer by about 10−8 radians.
For an apparatus in motion, the classical analysis requires that the beam-splitting mirror be slightly offset from an exact 45° if the longitudinal and transverse beams are to emerge from the apparatus exactly superimposed. In the relativistic analysis, Lorentz-contraction of the beam splitter in the direction of motion causes it to become more perpendicular by precisely the amount necessary to compensate for the angle discrepancy of the two beams.
Length contraction and Lorentz transformation
A first step to explaining the Michelson and Morley experiment's null result was found in the FitzGerald–Lorentz contraction hypothesis, now simply called length contraction or Lorentz contraction, first proposed by George FitzGerald (1889) in a letter to same journal that published the Michelson-Morley paper, as "almost the only hypothesis that can reconcile" the apparent contradictions. It was independently also proposed by Hendrik Lorentz
Hendrik Antoon Lorentz ( ; ; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for their discovery and theoretical explanation of the Zeeman effect. He derive ...
(1892). According to this law all objects physically contract by along the line of motion (originally thought to be relative to the aether), being the Lorentz factor
The Lorentz factor or Lorentz term (also known as the gamma factor) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in sev ...
. This hypothesis was partly motivated by Oliver Heaviside
Oliver Heaviside ( ; 18 May 1850 – 3 February 1925) was an English mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, an ...
's discovery in 1888 that electrostatic fields are contracting in the line of motion. But since there was no reason at that time to assume that binding forces in matter are of electric origin, length contraction of matter in motion with respect to the aether was considered an ad hoc hypothesis.
If length contraction of is inserted into the above formula for , then the light propagation time in the longitudinal direction becomes equal to that in the transverse direction:
:
However, length contraction is only a special case of the more general relation, according to which the transverse length is larger than the longitudinal length by the ratio . This can be achieved in many ways. If is the moving longitudinal length and the moving transverse length, being the rest lengths, then it is given:
:
can be arbitrarily chosen, so there are infinitely many combinations to explain the Michelson–Morley null result. For instance, if the relativistic value of length contraction of occurs, but if then no length contraction but an elongation of occurs. This hypothesis was later extended by Joseph Larmor (1897), Lorentz (1904) and Henri Poincaré
Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
(1905), who developed the complete Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant vel ...
including time dilation
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unsp ...
in order to explain the Trouton–Noble experiment, the Experiments of Rayleigh and Brace, and Kaufmann's experiments. It has the form
:
It remained to define the value of , which was shown by Lorentz (1904) to be unity. In general, Poincaré (1905) demonstrated that only allows this transformation to form a group, so it is the only choice compatible with the principle of relativity
In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference.
For example, in the framework of special relativity, the Maxwell equations ...
, ''i.e.,'' making the stationary aether undetectable. Given this, length contraction and time dilation obtain their exact relativistic values.
Special relativity
Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
formulated the theory of special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
by 1905, deriving the Lorentz transformation and thus length contraction and time dilation from the relativity postulate and the constancy of the speed of light, thus removing the ''ad hoc'' character from the contraction hypothesis. Einstein emphasized the kinematic
In physics, kinematics studies the geometrical aspects of motion of physical objects independent of forces that set them in motion. Constrained motion such as linked machine parts are also described as kinematics.
Kinematics is concerned with s ...
foundation of the theory and the modification of the notion of space and time, with the stationary aether no longer playing any role in his theory. He also pointed out the group character of the transformation. Einstein was motivated by Maxwell's theory of electromagnetism (in the form as it was given by Lorentz in 1895) and the lack of evidence for the luminiferous aether
Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
.
This allows a more elegant and intuitive explanation of the Michelson–Morley null result. In a comoving frame the null result is self-evident, since the apparatus can be considered as at rest in accordance with the relativity principle, thus the beam travel times are the same. In a frame relative to which the apparatus is moving, the same reasoning applies as described above in "Length contraction and Lorentz transformation", except the word "aether" has to be replaced by "non-comoving inertial frame". Einstein wrote in 1916:
The extent to which the null result of the Michelson–Morley experiment influenced Einstein is disputed. Alluding to some statements of Einstein, many historians argue that it played no significant role in his path to special relativity, while other statements of Einstein probably suggest that he was influenced by it. In any case, the null result of the Michelson–Morley experiment helped the notion of the constancy of the speed of light gain widespread and rapid acceptance.
It was later shown by Howard Percy Robertson (1949) and others (see Robertson–Mansouri–Sexl test theory), that it is possible to derive the Lorentz transformation entirely from the combination of three experiments. First, the Michelson–Morley experiment showed that the speed of light is independent of the ''orientation'' of the apparatus, establishing the relationship between longitudinal (β) and transverse (δ) lengths. Then in 1932, Roy Kennedy and Edward Thorndike modified the Michelson–Morley experiment by making the path lengths of the split beam unequal, with one arm being very short.[ The Kennedy–Thorndike experiment took place for many months as the Earth moved around the Sun. Their negative result showed that the speed of light is independent of the ''velocity'' of the apparatus in different inertial frames. In addition it established that besides length changes, corresponding time changes must also occur, i.e., it established the relationship between longitudinal lengths (β) and time changes (α). So both experiments do not provide the individual values of these quantities. This uncertainty corresponds to the undefined factor as described above. It was clear due to theoretical reasons (the group character of the Lorentz transformation as required by the relativity principle) that the individual values of length contraction and time dilation must assume their exact relativistic form. But a direct measurement of one of these quantities was still desirable to confirm the theoretical results. This was achieved by the Ives–Stilwell experiment (1938), measuring α in accordance with time dilation. Combining this value for α with the Kennedy–Thorndike null result shows that ''β'' must assume the value of relativistic length contraction. Combining ''β'' with the Michelson–Morley null result shows that ''δ'' must be zero. Therefore, the Lorentz transformation with is an unavoidable consequence of the combination of these three experiments.]
Special relativity is generally considered the solution to all negative aether drift (or isotropy
In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also u ...
of the speed of light) measurements, including the Michelson–Morley null result. Many high precision measurements have been conducted as tests of special relativity and modern searches for Lorentz violation in the photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
, electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
, nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number.
Until the 1960s, nucleons were thought to be ele ...
, or neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
sector, all of them confirming relativity.
Incorrect alternatives
As mentioned above, Michelson initially believed that his experiment would confirm Stokes' theory, according to which the aether was fully dragged in the vicinity of the Earth (see Aether drag hypothesis
In the 19th century, the theory of the luminiferous aether as the hypothetical Transmission medium, medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of lig ...
). However, complete aether drag contradicts the observed aberration of light and was contradicted by other experiments as well. In addition, Lorentz showed in 1886 that Stokes's attempt to explain aberration is contradictory.
Furthermore, the assumption that the aether is not carried in the vicinity, but only ''within'' matter, was very problematic as shown by the Hammar experiment (1935). Hammar directed one leg of his interferometer through a heavy metal pipe plugged with lead. If aether were dragged by mass, it was theorized that the mass of the sealed metal pipe would have been enough to cause a visible effect. Once again, no effect was seen, so aether-drag theories are considered to be disproven.
Walther Ritz's emission theory (or ballistic theory) was also consistent with the results of the experiment, not requiring aether. The theory postulates that light has always the same velocity in respect to the source. However de Sitter noted that emitter theory predicted several optical effects that were not seen in observations of binary stars in which the light from the two stars could be measured in a spectrometer
A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
. If emission theory were correct, the light from the stars should experience unusual fringe shifting due to the velocity of the stars being added to the speed of the light, but no such effect could be seen. It was later shown by J. G. Fox that the original de Sitter experiments were flawed due to extinction
Extinction is the termination of an organism by the death of its Endling, last member. A taxon may become Functional extinction, functionally extinct before the death of its last member if it loses the capacity to Reproduction, reproduce and ...
, but in 1977 Brecher observed X-rays from binary star systems with similar null results. Furthermore, Filippas and Fox (1964) conducted terrestrial particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
tests specifically designed to address Fox's earlier "extinction" objection, the results being inconsistent with source dependence of the speed of light.
Subsequent experiments
Although Michelson and Morley went on to different experiments after their first publication in 1887, both remained active in the field. Other versions of the experiment were carried out with increasing sophistication. Morley was not convinced of his own results, and went on to conduct additional experiments with Dayton Miller from 1902 to 1904. Again, the result was negative within the margins of error.[
Miller worked on increasingly larger interferometers, culminating in one with a (effective) arm length that he tried at various sites, including on top of a mountain at the ]Mount Wilson Observatory
The Mount Wilson Observatory (MWO) is an Observatory#Astronomical observatories, astronomical observatory in Los Angeles County, California, United States. The MWO is located on Mount Wilson (California), Mount Wilson, a peak in the San Gabrie ...
. To avoid the possibility of the aether wind being blocked by solid walls, his mountaintop observations used a special shed with thin walls, mainly of canvas. From noisy, irregular data, he consistently extracted a small positive signal that varied with each rotation of the device, with the sidereal day
Sidereal time ("sidereal" pronounced ) is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky. Sidereal t ...
, and on a yearly basis. His measurements in the 1920s amounted to approximately instead of the nearly expected from the Earth's orbital motion alone. He remained convinced this was due to partial entrainment or aether dragging, though he did not attempt a detailed explanation. He ignored critiques demonstrating the inconsistency of his results and the refutation by the Hammar experiment.[Thirring (1926) as well as Lorentz pointed out that Miller's results failed even the most basic criteria required to believe in their celestial origin, namely that the azimuth of supposed drift should exhibit daily variations consistent with the source rotating about the celestial pole. Instead, while Miller's observations showed daily variations, their oscillations in one set of experiments might center, say, around a northwest–southeast line.] Miller's findings were considered important at the time, and were discussed by Michelson, Lorentz and others at a meeting reported in 1928. There was general agreement that more experimentation was needed to check Miller's results. Miller later built a non-magnetic device to eliminate magnetostriction
Magnetostriction is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization. The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive ...
, while Michelson built one of non-expanding Invar
Invar, also known generically as FeNi36 (64FeNi in the US), is a nickel–iron alloy notable for its uniquely low coefficient of thermal expansion (CTE or α). The name ''Invar'' comes from the word ''invariable'', referring to its relative lac ...
to eliminate any remaining thermal effects. Other experimenters from around the world increased accuracy, eliminated possible side effects, or both. So far, no one has been able to replicate Miller's results, and modern experimental accuracies have ruled them out. Roberts (2006) has pointed out that the primitive data reduction techniques used by Miller and other early experimenters, including Michelson and Morley, were capable of ''creating'' apparent periodic signals even when none existed in the actual data. After reanalyzing Miller's original data using modern techniques of quantitative error analysis, Roberts found Miller's apparent signals to be statistically insignificant.
Using a special optical arrangement involving a 1/20 wave step in one mirror, Roy J. Kennedy (1926) and K.K. Illingworth (1927) (Fig. 8) converted the task of detecting fringe shifts from the relatively insensitive one of estimating their lateral displacements to the considerably more sensitive task of adjusting the light intensity on both sides of a sharp boundary for equal luminance.[ If they observed unequal illumination on either side of the step, such as in Fig. 8e, they would add or remove calibrated weights from the interferometer until both sides of the step were once again evenly illuminated, as in Fig. 8d. The number of weights added or removed provided a measure of the fringe shift. Different observers could detect changes as little as 1/1500 to 1/300 of a fringe. Kennedy also carried out an experiment at Mount Wilson, finding only about 1/10 the drift measured by Miller and no seasonal effects.]
In 1930, Georg Joos conducted an experiment using an automated interferometer with arms forged from pressed quartz having a very low coefficient of thermal expansion, that took continuous photographic strip recordings of the fringes through dozens of revolutions of the apparatus. Displacements of 1/1000 of a fringe could be measured on the photographic plates. No periodic fringe displacements were found, placing an upper limit to the aether wind of .
In the table below, the expected values are related to the relative speed between Earth and Sun of . With respect to the speed of the Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
around the galactic center of about , or the speed of the Solar System relative to the CMB rest frame of about , the null results of those experiments are even more obvious.
Recent experiments
Optical tests
Optical tests of the isotropy of the speed of light became commonplace.[Relativity FAQ (2007)]
What is the experimental basis of Special Relativity?
/ref> New technologies, including the use of laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s and masers, have significantly improved measurement precision. (In the following table, only Essen (1955), Jaseja (1964), and Shamir/Fox (1969) are experiments of Michelson–Morley type, ''i.e.,'' comparing two perpendicular beams. The other optical experiments employed different methods.)
Recent optical resonator experiments
During the early 21st century, there has been a resurgence in interest in performing precise Michelson–Morley type experiments using lasers, masers, cryogenic optical resonators, etc. This is in large part due to predictions of quantum gravity that suggest that special relativity may be violated at scales accessible to experimental study. The first of these highly accurate experiments was conducted by Brillet & Hall (1979), in which they analyzed a laser frequency stabilized to a resonance of a rotating optical Fabry–Pérot cavity. They set a limit on the anisotropy of the speed of light resulting from the Earth's motions of Δ''c''/''c'' ≈ 10−15, where Δ''c'' is the difference between the speed of light in the ''x''- and ''y''-directions.
As of 2015, optical and microwave resonator experiments have improved this limit to Δ''c''/''c'' ≈ 10−18. In some of them, the devices were rotated or remained stationary, and some were combined with the Kennedy–Thorndike experiment. In particular, Earth's direction and velocity (ca. ) relative to the CMB rest frame are ordinarily used as references in these searches for anisotropies.
Other tests of Lorentz invariance
Examples of other experiments not based on the Michelson–Morley principle, i.e., non-optical isotropy tests achieving an even higher level of precision, are Clock comparison or Hughes–Drever experiments. In Drever's 1961 experiment, 7Li nuclei in the ground state, which has total angular momentum ''J'' = 3/2, were split into four equally spaced levels by a magnetic field. Each transition between a pair of adjacent levels should emit a photon of equal frequency, resulting in a single, sharp spectral line. However, since the nuclear wave functions for different ''MJ'' have different orientations in space relative to the magnetic field, any orientation dependence, whether from an aether wind or from a dependence on the large-scale distribution of mass in space (see Mach's principle
In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture) is the name given by Albert Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The ...
), would perturb the energy spacings between the four levels, resulting in an anomalous broadening or splitting of the line. No such broadening was observed. Modern repeats of this kind of experiment have provided some of the most accurate confirmations of the principle of Lorentz invariance
In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While ...
.[
]
See also
* Michelson–Morley Award
* Moving magnet and conductor problem
* ''The Light'' (Glass)
* LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Prior to LIG ...
References
Notes
Experiments
Bibliography (Series "A" references)
External links
*
*
*
*
*
{{DEFAULTSORT:Michelson-Morley Experiment
Physics experiments
Aether theories
Case Western Reserve University
Tests of special relativity
1887 in science