Mathematicians From Berlin
   HOME

TheInfoList



OR:

A mathematician is someone who uses an extensive knowledge of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
in their work, typically to solve
mathematical problem A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the Solar System, or a problem of a more ...
s. Mathematicians are concerned with
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s,
data Data ( , ) are a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted for ...
,
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a u ...
,
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
,
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
,
models A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided int ...
, and
change Change, Changed or Changing may refer to the below. Other forms are listed at Alteration * Impermanence, a difference in a state of affairs at different points in time * Menopause, also referred to as "the change", the permanent cessation of t ...
.


History

One of the earliest known mathematicians was
Thales of Miletus Thales of Miletus ( ; ; ) was an Ancient Greek pre-Socratic philosopher from Miletus in Ionia, Asia Minor. Thales was one of the Seven Sages, founding figures of Ancient Greece. Beginning in eighteenth-century historiography, many came to ...
(); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, by deriving four corollaries to
Thales's theorem In geometry, Thales's theorem states that if , , and are distinct points on a circle where the line is a diameter, the angle is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as pa ...
. The number of known mathematicians grew when
Pythagoras of Samos Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
() established the
Pythagorean school Pythagorean, meaning of or pertaining to the ancient Ionian mathematician, philosopher, and music theorist Pythagoras, may refer to: Philosophy * Pythagoreanism, the esoteric and metaphysical beliefs purported to have been held by Pythagoras * N ...
, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was
Hypatia Hypatia (born 350–370 – March 415 AD) was a Neoplatonist philosopher, astronomer, and mathematician who lived in Alexandria, Egypt (Roman province), Egypt: at that time a major city of the Eastern Roman Empire. In Alexandria, Hypatia was ...
of Alexandria ( – 415). She succeeded her father as librarian at the Great Library and wrote many works on applied mathematics. Because of a political dispute, the Christian community in Alexandria punished her, presuming she was involved, by stripping her naked and scraping off her skin with clamshells (some say roofing tiles). Science and mathematics in the Islamic world during the Middle Ages followed various models and modes of funding varied based primarily on scholars. It was extensive patronage and strong intellectual policies implemented by specific rulers that allowed scientific knowledge to develop in many areas. Funding for translation of scientific texts in other languages was ongoing throughout the reign of certain caliphs, and it turned out that certain scholars became experts in the works they translated, and in turn received further support for continuing to develop certain sciences. As these sciences received wider attention from the elite, more scholars were invited and funded to study particular sciences. An example of a translator and mathematician who benefited from this type of support was
Al-Khawarizmi Muhammad ibn Musa al-Khwarizmi , or simply al-Khwarizmi, was a mathematician active during the Islamic Golden Age, who produced Arabic-language works in Mathematics in the medieval Islamic world, mathematics, Astronomy in the medieval Islami ...
. A notable feature of many scholars working under Muslim rule in medieval times is that they were often polymaths. Examples include the work on
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
,
maths Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include num ...
and
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
of
Ibn al-Haytham Ḥasan Ibn al-Haytham (Latinization of names, Latinized as Alhazen; ; full name ; ) was a medieval Mathematics in medieval Islam, mathematician, Astronomy in the medieval Islamic world, astronomer, and Physics in the medieval Islamic world, p ...
. The
Renaissance The Renaissance ( , ) is a Periodization, period of history and a European cultural movement covering the 15th and 16th centuries. It marked the transition from the Middle Ages to modernity and was characterized by an effort to revive and sur ...
brought an increased emphasis on mathematics and science to Europe. During this period of transition from a mainly feudal and ecclesiastical culture to a predominantly secular one, many notable mathematicians had other occupations:
Luca Pacioli Luca Bartolomeo de Pacioli, O.F.M. (sometimes ''Paccioli'' or ''Paciolo''; 1447 – 19 June 1517) was an Italian mathematician, Franciscan friar, collaborator with Leonardo da Vinci, and an early contributor to the field now known as account ...
(founder of
accounting Accounting, also known as accountancy, is the process of recording and processing information about economic entity, economic entities, such as businesses and corporations. Accounting measures the results of an organization's economic activit ...
);
Niccolò Fontana Tartaglia Nicolo, known as Tartaglia (; 1499/1500 – 13 December 1557), was an Italian mathematician, engineer (designing fortifications), a surveyor (of topography, seeking the best means of defense or offense) and a bookkeeper from the then Republi ...
(notable engineer and bookkeeper);
Gerolamo Cardano Gerolamo Cardano (; also Girolamo or Geronimo; ; ; 24 September 1501– 21 September 1576) was an Italian polymath whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, as ...
(earliest founder of probability and binomial expansion);
Robert Recorde Robert Recorde () was a Welsh physician and mathematician. He invented the equals sign (=) and also introduced the pre-existing plus (+) and minus (−) signs to English speakers in 1557. Biography Born around 1510, Robert Recorde was the sec ...
(physician) and
François Viète François Viète (; 1540 – 23 February 1603), known in Latin as Franciscus Vieta, was a French people, French mathematician whose work on new algebra was an important step towards modern algebra, due to his innovative use of letters as par ...
(lawyer). As time passed, many mathematicians gravitated towards universities. An emphasis on free thinking and experimentation had begun in Britain's oldest universities beginning in the seventeenth century at
Oxford Oxford () is a City status in the United Kingdom, cathedral city and non-metropolitan district in Oxfordshire, England, of which it is the county town. The city is home to the University of Oxford, the List of oldest universities in continuou ...
with the scientists
Robert Hooke Robert Hooke (; 18 July 16353 March 1703) was an English polymath who was active as a physicist ("natural philosopher"), astronomer, geologist, meteorologist, and architect. He is credited as one of the first scientists to investigate living ...
and
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, Alchemy, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the foun ...
, and at
Cambridge Cambridge ( ) is a List of cities in the United Kingdom, city and non-metropolitan district in the county of Cambridgeshire, England. It is the county town of Cambridgeshire and is located on the River Cam, north of London. As of the 2021 Unit ...
where
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
was Lucasian Professor of Mathematics & Physics. Moving into the 19th century, the objective of universities all across Europe evolved from teaching the "regurgitation of knowledge" to "encourag ngproductive thinking." In 1810,
Alexander von Humboldt Friedrich Wilhelm Heinrich Alexander von Humboldt (14 September 1769 – 6 May 1859) was a German polymath, geographer, natural history, naturalist, List of explorers, explorer, and proponent of Romanticism, Romantic philosophy and Romanticism ...
convinced the king of
Prussia Prussia (; ; Old Prussian: ''Prūsija'') was a Germans, German state centred on the North European Plain that originated from the 1525 secularization of the Prussia (region), Prussian part of the State of the Teutonic Order. For centuries, ...
, Fredrick William III, to build a university in Berlin based on
Friedrich Schleiermacher Friedrich Daniel Ernst Schleiermacher (; ; 21 November 1768 – 12 February 1834) was a German Reformed Church, Reformed theology, theologian, philosopher, and biblical scholar known for his attempt to reconcile the criticisms of the Age o ...
's liberal ideas; the goal was to demonstrate the process of the discovery of knowledge and to teach students to "take account of fundamental laws of science in all their thinking." Thus, seminars and laboratories started to evolve. British universities of this period adopted some approaches familiar to the Italian and German universities, but as they already enjoyed substantial freedoms and
autonomy In developmental psychology and moral, political, and bioethical philosophy, autonomy is the capacity to make an informed, uncoerced decision. Autonomous organizations or institutions are independent or self-governing. Autonomy can also be ...
the changes there had begun with the
Age of Enlightenment The Age of Enlightenment (also the Age of Reason and the Enlightenment) was a Europe, European Intellect, intellectual and Philosophy, philosophical movement active from the late 17th to early 19th century. Chiefly valuing knowledge gained th ...
, the same influences that inspired Humboldt. The Universities of
Oxford Oxford () is a City status in the United Kingdom, cathedral city and non-metropolitan district in Oxfordshire, England, of which it is the county town. The city is home to the University of Oxford, the List of oldest universities in continuou ...
and
Cambridge Cambridge ( ) is a List of cities in the United Kingdom, city and non-metropolitan district in the county of Cambridgeshire, England. It is the county town of Cambridgeshire and is located on the River Cam, north of London. As of the 2021 Unit ...
emphasized the importance of
research Research is creative and systematic work undertaken to increase the stock of knowledge. It involves the collection, organization, and analysis of evidence to increase understanding of a topic, characterized by a particular attentiveness to ...
, arguably more authentically implementing Humboldt's idea of a university than even German universities, which were subject to state authority. Overall, science (including mathematics) became the focus of universities in the 19th and 20th centuries. Students could conduct research in
seminars A seminar is a form of academic instruction, either at an academic institution or offered by a commercial or professional organization. It has the function of bringing together small groups for recurring meetings, focusing each time on some part ...
or
laboratories A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which science, scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as s ...
and began to produce doctoral theses with more scientific content. According to Humboldt, the mission of the
University of Berlin The Humboldt University of Berlin (, abbreviated HU Berlin) is a public research university in the central borough of Mitte in Berlin, Germany. The university was established by Frederick William III on the initiative of Wilhelm von Humbol ...
was to pursue scientific knowledge. The German university system fostered professional, bureaucratically regulated scientific research performed in well-equipped laboratories, instead of the kind of research done by private and individual scholars in Great Britain and France. In fact, Rüegg asserts that the German system is responsible for the development of the modern research university because it focused on the idea of "freedom of scientific research, teaching and study."


Required education

Mathematicians usually cover a breadth of topics within mathematics in their
undergraduate education Undergraduate education is education conducted after secondary education and before postgraduate education, usually in a college or university. It typically includes all postsecondary programs up to the level of a bachelor's degree. For example, ...
, and then proceed to specialize in topics of their own choice at the graduate level. In some universities, a qualifying exam serves to test both the breadth and depth of a student's understanding of mathematics; the students who pass are permitted to work on a
doctoral dissertation A thesis (: theses), or dissertation (abbreviated diss.), is a document submitted in support of candidature for an academic degree or professional qualification presenting the author's research and findings.International Standard ISO 7144: D ...
.


Activities


Applied mathematics

Mathematicians involved with solving problems with applications in real life are called
applied mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One ...
s. Applied mathematicians are mathematical scientists who, with their specialized knowledge and
professional A professional is a member of a profession or any person who work (human activity), works in a specified professional activity. The term also describes the standards of education and training that prepare members of the profession with the partic ...
methodology, approach many of the imposing problems presented in related scientific fields. With professional focus on a wide variety of problems, theoretical systems, and localized constructs, applied mathematicians work regularly in the study and formulation of
mathematical models A mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed ''mathematical modeling''. Mathematical models are used in applied mathemati ...
. Mathematicians and applied mathematicians are considered to be two of the STEM (science, technology, engineering, and mathematics) careers. The discipline of
applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
concerns itself with mathematical methods that are typically used in science, engineering, business, and industry; thus, "applied mathematics" is a
mathematical science The Mathematical Sciences are a group of areas of study that includes, in addition to mathematics, those academic disciplines that are primarily mathematical in nature but may not be universally considered subfields of mathematics proper. Statist ...
with specialized knowledge. The term "applied mathematics" also describes the
professional A professional is a member of a profession or any person who work (human activity), works in a specified professional activity. The term also describes the standards of education and training that prepare members of the profession with the partic ...
specialty in which mathematicians work on problems, often concrete but sometimes abstract. As professionals focused on problem solving, ''applied mathematicians'' look into the ''formulation, study, and use of mathematical models'' in
science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
,
engineering Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
,
business Business is the practice of making one's living or making money by producing or Trade, buying and selling Product (business), products (such as goods and Service (economics), services). It is also "any activity or enterprise entered into for ...
, and other areas of mathematical practice.


Pure mathematics

Pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
is
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
that studies entirely abstract
concept A concept is an abstract idea that serves as a foundation for more concrete principles, thoughts, and beliefs. Concepts play an important role in all aspects of cognition. As such, concepts are studied within such disciplines as linguistics, ...
s. From the eighteenth century onwards, this was a recognized category of mathematical activity, sometimes characterized as ''speculative mathematics'', and at variance with the trend towards meeting the needs of
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
,
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
,
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ...
,
engineering Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
, and other applications. Another insightful view put forth is that ''pure mathematics is not necessarily
applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
'': it is possible to study abstract entities with respect to their intrinsic nature, and not be concerned with how they manifest in the real world.Andy Magid, Letter from the Editor, in ''Notices of the AMS'', November 2005, American Mathematical Society, p.1173

Even though the pure and applied viewpoints are distinct philosophical positions, in practice there is much overlap in the activity of pure and applied mathematicians. To develop accurate models for describing the real world, many applied mathematicians draw on tools and techniques that are often considered to be "pure" mathematics. On the other hand, many pure mathematicians draw on natural and social phenomena as inspiration for their abstract research.


Mathematics teaching

Many professional mathematicians also engage in the teaching of mathematics. Duties may include: * teaching university mathematics courses; * supervising undergraduate and graduate research; and * serving on academic committees.


Consulting

Many careers in mathematics outside of universities involve consulting. For instance, actuaries assemble and analyze data to estimate the probability and likely cost of the occurrence of an event such as death, sickness, injury, disability, or loss of property. Actuaries also address financial questions, including those involving the level of pension contributions required to produce a certain retirement income and the way in which a company should invest resources to maximize its return on investments in light of potential risk. Using their broad knowledge, actuaries help design and price insurance policies, pension plans, and other financial strategies in a manner which will help ensure that the plans are maintained on a sound financial basis. As another example, mathematical finance will derive and extend the Mathematical model, mathematical or numerical models without necessarily establishing a link to financial theory, taking observed market prices as input. Mathematical consistency is required, not compatibility with economic theory. Thus, for example, while a financial economist might study the structural reasons why a company may have a certain
share price A share price is the price of a single share of a number of saleable equity shares of a company. In layman's terms, the stock price is the highest amount someone is willing to pay for the stock, or the lowest amount that it can be bought for. B ...
, a financial mathematician may take the share price as a given, and attempt to use
stochastic calculus Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created an ...
to obtain the corresponding value of
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s of the
stock Stocks (also capital stock, or sometimes interchangeably, shares) consist of all the Share (finance), shares by which ownership of a corporation or company is divided. A single share of the stock means fractional ownership of the corporatio ...
(''see:
Valuation of options In finance, a price (premium) is paid or received for purchasing or selling options. The calculation of this premium will require sophisticated mathematics. Premium components This price can be split into two components: intrinsic value, and ...
;
Financial modeling Financial modeling is the task of building an abstract representation (a model) of a real world financial situation. This is a mathematical model designed to represent (a simplified version of) the performance of a financial asset or portfolio o ...
'').


Occupations

According to the
Dictionary of Occupational Titles The ''Dictionary of Occupational Titles'' or D-O-T (DOT) refers to a publication produced by the United States Department of Labor which helped employers, government officials, and workforce development professionals to define over 13,000 differen ...
occupations in mathematics include the following. * Mathematician * Operations-Research Analyst * Mathematical Statistician * Mathematical Technician *
Actuary An actuary is a professional with advanced mathematical skills who deals with the measurement and management of risk and uncertainty. These risks can affect both sides of the balance sheet and require investment management, asset management, ...
* Applied
Statistician A statistician is a person who works with Theory, theoretical or applied statistics. The profession exists in both the private sector, private and public sectors. It is common to combine statistical knowledge with expertise in other subjects, a ...
* Weight Analyst


Prizes in mathematics

There is no
Nobel Prize The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
in mathematics, though sometimes mathematicians have won the Nobel Prize in a different field, such as economics or physics. Prominent prizes in mathematics include the Abel Prize, the
Chern Medal The Chern Medal is an international award recognizing outstanding lifelong achievement of the highest level in the field of mathematics. The prize is given at the International Congress of Mathematicians (ICM), which is held every four years. I ...
, the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
, the
Gauss Prize The Carl Friedrich Gauss Prize for Applications of Mathematics is a mathematics award, granted jointly by the International Mathematical Union and the German Mathematical Society for "outstanding mathematical contributions that have found signific ...
, the Nemmers Prize, the
Balzan Prize The International Balzan Prize Foundation awards four annual monetary prizes to people or organizations who have made outstanding achievements in the fields of humanities, natural sciences, culture, as well as for endeavours for peace and the b ...
, the
Crafoord Prize The Crafoord Prize () is an annual science prize established in 1980 by Holger Crafoord, a Swedish industrialist, and his wife Anna-Greta Crafoord following a donation to the Royal Swedish Academy of Sciences. It is awarded jointly by the Acade ...
, the
Shaw Prize The Shaw Prize is a set of three annual awards presented by the Shaw Prize Foundation in the fields of astronomy, medicine and life sciences, and mathematical sciences. Established in 2002 in Hong Kong, by Hong Kong entertainment mogul and p ...
, the
Steele Prize The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for distinguished research work and writing in the field of mathematics. Since 1993, there has been a formal division into three categories. The prizes have b ...
, the
Wolf Prize The Wolf Prize is an international award granted in Israel, that has been presented most years since 1978 to living scientists and artists for "achievements in the interest of mankind and friendly relations among people ... irrespective of natio ...
, the
Schock Prize The Rolf Schock Prizes were established and endowed by bequest of philosopher and artist Rolf Schock (1933–1986). The prizes were first awarded in Stockholm, Sweden, in 1993 and, since 2005, are awarded every three years. It is sometimes consider ...
, and the
Nevanlinna Prize The IMU Abacus Medal, known before 2022 as the Rolf Nevanlinna Prize, is awarded once every four years at the International Congress of Mathematicians, hosted by the International Mathematical Union (IMU), for outstanding contributions in Mathematic ...
. The
American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, ...
,
Association for Women in Mathematics The Association for Women in Mathematics (AWM) is a professional society whose mission is to encourage women and girls to study and to have active careers in the mathematical sciences, and to promote equal opportunity for and the equal treatment o ...
, and other mathematical societies offer several prizes aimed at increasing the representation of women and minorities in the future of mathematics.


Mathematical autobiographies

Several well known mathematicians have written autobiographies in part to explain to a general audience what it is about mathematics that has made them want to devote their lives to its study. These provide some of the best glimpses into what it means to be a mathematician. The following list contains some works that are not autobiographies, but rather essays on mathematics and mathematicians with strong autobiographical elements. * ''The Book of My Life'' –
Girolamo Cardano Gerolamo Cardano (; also Girolamo or Geronimo; ; ; 24 September 1501– 21 September 1576) was an Italian polymath whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, a ...
* ''
A Mathematician's Apology ''A Mathematician's Apology'' is a 1940 essay by British mathematician G. H. Hardy which defends the pursuit of mathematics for its own sake. Central to Hardy's "apology" – in the sense of a formal justification or defence (as in Plato's '' ...
'' - G.H. Hardy * '' A Mathematician's Miscellany'' (republished as Littlewood's miscellany) - J. E. Littlewood * ''I Am a Mathematician'' -
Norbert Wiener Norbert Wiener (November 26, 1894 – March 18, 1964) was an American computer scientist, mathematician, and philosopher. He became a professor of mathematics at the Massachusetts Institute of Technology ( MIT). A child prodigy, Wiener late ...
* ''I Want to be a Mathematician'' - Paul R. Halmos * ''Adventures of a Mathematician'' -
Stanislaw Ulam Stanislav and variants may refer to: People *Stanislav (given name), a Slavic given name with many spelling variations (Stanislaus, Stanislas, Stanisław, etc.) Places * Stanislav, Kherson Oblast, a coastal village in Ukraine * Stanislaus County, ...
* ''Enigmas of Chance'' -
Mark Kac Mark Kac ( ; Polish: ''Marek Kac''; August 3, 1914 – October 26, 1984) was a Polish-American mathematician. His main interest was probability theory. His question, " Can one hear the shape of a drum?" set off research into spectral theory, th ...
* ''Random Curves'' -
Neal Koblitz Neal I. Koblitz (born December 24, 1948) is a Professor of Mathematics at the University of Washington. He is also an adjunct professor with the Centre for Applied Cryptographic Research at the University of Waterloo. He is the creator of hype ...
* '' Love and Math'' - Edward Frenkel * ''Mathematics Without Apologies'' - Michael Harris


See also

* * * * * * * *


Notes


Bibliography

* * * * * *


Further reading

*


External links


Occupational Outlook: Mathematicians
Information on the occupation of mathematician from the US Department of Labor.

Although US-centric, a useful resource for anyone interested in a career as a mathematician. Learn what mathematicians do on a daily basis, where they work, how much they earn, and more.
The MacTutor History of Mathematics archive
. A comprehensive list of detailed biographies.
The Mathematics Genealogy Project
. Allows scholars to follow the succession of thesis advisors for most mathematicians, living or dead. *
Middle School Mathematician Project
Short biographies of select mathematicians assembled by middle school students.
Career Information for Students of Math and Aspiring Mathematicians
fro
MathMajor
{{Authority control