HOME

TheInfoList



OR:

__NOTOC__ In the
calculus of variations The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of f ...
the Legendre–Clebsch condition is a second-order condition which a solution of the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
must satisfy in order to be a minimum. For the problem of minimizing : \int_^ L(t,x,x')\, dt . \, the condition is :L_(t,x(t),x'(t)) \ge 0, \, \forall t \in ,b/math>


Generalized Legendre–Clebsch

In
optimal control Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations ...
, the situation is more complicated because of the possibility of a singular solution. The generalized Legendre–Clebsch condition, also known as convexity, is a sufficient condition for local optimality such that when the linear sensitivity of the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
to changes in u is zero, i.e., : \frac = 0, the Hessian of the Hamiltonian is positive definite along the trajectory of the solution: : \frac > 0 In words, the generalized LC condition guarantees that over a singular arc, the Hamiltonian is minimized.


See also

*
Bang–bang control In control theory, a bang–bang controller (hysteresis, 2 step or on–off controller), is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They ...


References


Further reading

* * {{DEFAULTSORT:Legendre-Clebsch condition Optimal control Calculus of variations