Action principles lie at the heart of fundamental physics, from classical mechanics through quantum mechanics, particle physics, and general relativity. Action principles start with an energy function called a
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
describing the physical system. The accumulated value of this energy function between two states of the system is called the
action
Action may refer to:
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video game
Film
* Action film, a genre of film
* ''Action'' (1921 film), a film by John Ford
* ''Action'' (1980 fil ...
. Action principles apply the
calculus of variation
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions
and functionals, to find maxima and minima of functionals: mappings from a set of functions ...
to the action. The action depends on the energy function, and the energy function depends on the position, motion, and interactions in the system: variation of the action allows the derivation of the equations of motion without vector or forces.
Several distinct action principles differ in the constraints on their initial and final conditions.
The names of action principles have evolved over time and differ in details of the endpoints of the paths and the nature of the variation. Quantum action principles generalize and justify the older classical principles. Action principles are the basis for Feynman's version of quantum mechanics,
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
and
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
.
The action principles have applications as broad as physics, including many problems in classical mechanics but especially in modern problems of quantum mechanics and general relativity. These applications built up over two centuries as the power of the method and its further mathematical development rose.
This article introduces the action principle concepts and summarizes other articles with more details on concepts and specific principles.
Common concepts
Action principles are "
integral
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
" approaches rather than the "
differential
Differential may refer to:
Mathematics
* Differential (mathematics) comprises multiple related meanings of the word, both in calculus and differential geometry, such as an infinitesimal change in the value of a function
* Differential algebra
* ...
" approach of
Newtonian mechanics
Newton's laws of motion are three basic Scientific law, laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at re ...
. The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.
Energy, not force
Introductory study of mechanics, the science of interacting objects, typically begins with
Newton's laws
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at rest, or in motio ...
based on the concept of
force
A force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the Magnitude ...
, defined by the acceleration it causes when applied to
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
: This approach to mechanics focuses on a single point in space and time, attempting to answer the question: "What happens next?". Mechanics based on action principles begin with the concept of
action
Action may refer to:
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video game
Film
* Action film, a genre of film
* ''Action'' (1921 film), a film by John Ford
* ''Action'' (1980 fil ...
, an energy tradeoff between
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its a ...
and
potential energy
In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Common types of potential energy include the gravitational potentia ...
, defined by the physics of the problem. These approaches answer questions relating starting and ending points: Which trajectory will place a basketball in the hoop? If we launch a rocket to the Moon today, how can it land there in 5 days? The Newtonian and action-principle forms are equivalent, and either one can solve the same problems, but selecting the appropriate form will make solutions much easier.
The energy function in the action principles is not the total energy ( conserved in an isolated system), but the
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
, the difference between kinetic and potential energy. The kinetic energy combines the energy of motion for all the objects in the system; the potential energy depends upon the instantaneous position of the objects and drives the motion of the objects. The motion of the objects places them in new positions with new potential energy values, giving a new value for the Lagrangian.
Using energy rather than force gives immediate advantages as a basis for mechanics. Force mechanics involves 3-dimensional
vector calculus
Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subjec ...
, with 3 space and 3 momentum coordinates for each object in the scenario; energy is a scalar magnitude combining information from all objects, giving an immediate simplification in many cases. The components of force vary with coordinate systems; the energy value is the same in all coordinate systems. Force requires an inertial frame of reference; once velocities approach the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
,
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The law ...
profoundly affects mechanics based on forces. In action principles, relativity merely requires a different Lagrangian: the principle itself is independent of coordinate systems.
Paths, not points
The explanatory diagrams in force-based mechanics usually focus on a single point, like the
center of momentum
In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system is ...
, and show vectors of forces and velocities. The explanatory diagrams of action-based mechanics have two points with actual and possible paths connecting them. These diagrammatic conventions reiterate the different strong points of each method.
Depending on the action principle, the two points connected by paths in a diagram may represent two particle positions at different times, or the two points may represent values in a configuration space or in a
phase space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usual ...
. The mathematical technology and terminology of action principles can be learned by thinking in terms of physical space, then applied in the more powerful and general abstract spaces.
Action along a path
Action principles assign a number—the action—to each possible path between two points. This number is computed by adding an energy value for each small section of the path multiplied by the time spent in that section:
: action
where the form of the kinetic () and potential () energy expressions depend upon the physics problem, and their value at each point on the path depends upon relative coordinates corresponding to that point. The energy function is called a Lagrangian; in simple problems it is the kinetic energy minus the potential energy of the system.
Path variation
A system moving between two points takes one particular path; other similar paths are not taken. Each path corresponds to a value of the action.
An action principle predicts or explains that the particular path taken has a stationary value for the system's action: similar paths near the one taken have very similar action value. This variation in the action value is key to the action principles.
The symbol is used to indicate the path
variations
Variation or Variations may refer to:
Science and mathematics
* Variation (astronomy), any perturbation of the mean motion or orbit of a planet or satellite, particularly of the moon
* Genetic variation, the difference in DNA among individual ...
so an action principle appears mathematically as
:
meaning that at the
stationary point
In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" i ...
, the variation of the action with some fixed constraints is zero.
For action principles, the stationary point may be a minimum or a saddle point, but not a maximum. Elliptical planetary orbits provide a simple example of two paths with equal action one in each direction around the orbit; neither can be the minimum or "least action". The path variation implied by is not the same as a differential like . The action integral depends on the coordinates of the objects, and these coordinates depend upon the path taken. Thus the action integral is a
functional
Functional may refer to:
* Movements in architecture:
** Functionalism (architecture)
** Form follows function
* Functional group, combination of atoms within molecules
* Medical conditions without currently visible organic basis:
** Functional s ...
, a function of a function.
Conservation principles
An important result from geometry known as
Noether's theorem
Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether ...
states that any conserved quantities in a Lagrangian imply a continuous symmetry and conversely. For examples, a Lagrangian independent of time corresponds to a system with conserved energy; spatial translation independence implies momentum conservation; angular rotation invariance implies angular momentum conservation.
These examples are global symmetries, where the independence is itself independent of space or time; more general ''local'' symmetries having a functional dependence on space or time lead to
gauge theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups ...
. The observed conservation of
isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
was used by
Chen Ning Yang
Yang Chen-Ning or Chen-Ning Yang (; born 1 October 1922), also known as C. N. Yang or by the English name Frank Yang, is a Chinese theoretical physicist who made significant contributions to statistical mechanics, integrable systems, gauge th ...
and Robert Mills in 1953 to construct a gauge theory for
meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticle ...
Action principles apply to a wide variety of physical problems, including all of fundamental physics. The only major exceptions are cases involving friction or when only the initial position and velocities are given. Different action principles have different meaning for the variations; each specific application of an action principle requires a specific Lagrangian describing the physics. A common name for any or all of these principles is "the principle of least action". For a discussion of the names and historical origin of these principles see action principle names.
Fixed endpoints with conserved energy
When total energy and the endpoints are fixed, Maupertuis's least action principle applies. For example, to score points in basketball the ball must leave the shooters hand and go through the hoop, but the time of the flight is not constrained. Maupertuis's least action principle is written mathematically as the stationary condition
on the abbreviated action
(sometimes written ), where are the particle momenta or the conjugate momenta of
generalized coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 39 ...
, defined by the equation
where is the
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
. Some textbooks write as , to emphasize that the variation used in this form of the action principle differs from Hamilton's variation. Here the total energy is fixed during the variation, but not the time, the reverse of the constraints on Hamilton's principle. Consequently, the same path and end points take different times and energies in the two forms. The solutions in the case of this form of Maupertuis's principle are
orbits
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a ...
: functions relating coordinates to each other in which time is simply an index or a parameter.
Time-independent potentials; no forces
For time-invariant system, the action relates simply to the abbreviated action on the stationary path as
for energy and time difference . For a rigid body with no net force, the actions are identical, and the variational principles become equivalent to
Fermat's principle
Fermat's principle, also known as the principle of least time, is the link between ray optics and wave optics. In its original "strong" form, Fermat's principle states that the path taken by a ray between two given points is the pat ...
of least time:
Fixed events
When the physics problem gives the two endpoints as a position and a time, that is as
events
Event may refer to:
Gatherings of people
* Ceremony, an event of ritual significance, performed on a special occasion
* Convention (meeting), a gathering of individuals engaged in some common interest
* Event management, the organization of ev ...
, Hamilton's action principle applies. For example, imagine planning a trip to the Moon. During your voyage the Moon will continue its orbit around the Earth: it's a moving target. Hamilton's principle for objects at positions is written mathematically as
The constraint means that we only consider paths taking the same time, as well as connecting the same two points and . The
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
is the difference between kinetic energy and potential energy at each point on the path. Solution of the resulting equations gives the
world line
The world line (or worldline) of an object is the path that an object traces in 4- dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics.
The concept of a "world line" is distinguished from c ...
. Starting with Hamilton's principle, the local differential
Euler–Lagrange equation
In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
can be derived for systems of fixed energy. The action in Hamilton's principle is the
Legendre transformation
In mathematics, the Legendre transformation (or Legendre transform), named after Adrien-Marie Legendre, is an involutive transformation on real-valued convex functions of one real variable. In physical problems, it is used to convert function ...
of the action in Maupertuis' principle.
Classical field theory
The concepts and many of the methods useful for particle mechanics also apply to continuous fields. The action integral runs over a Lagrangian density, but the concepts are so close that the density is often simply called the Lagrangian.
Quantum action principles
For quantum mechanics, the action principles have significant advantages: only one mechanical postulate is needed, if a covariant Lagrangian is used in the action, the result is relativistically correct, and they transition clearly to classical equivalents.
Both
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superf ...
and
Julian Schwinger
Julian Seymour Schwinger (; February 12, 1918 – July 16, 1994) was a Nobel Prize winning American theoretical physicist. He is best known for his work on quantum electrodynamics (QED), in particular for developing a relativistically invariant ...
developed quantum action principles based on early work by
Paul Dirac
Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Unive ...
. Feynman's integral method was not a variational principle but reduces to the classical least action principle; it led to his
Feynman diagrams
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduc ...
When quantum effects are important, new action principles are needed. Instead of a particle following a path, quantum mechanics defines a probability amplitude at one point and time related to a probability amplitude at a different point later in time:
where is the classical action.
Instead of single path with stationary action, all possible paths add (the integral over ), weighted by a complex probability amplitude . The phase of the amplitude is given by the action divided by the
Planck constant
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalen ...
or quantum of action: . When the action of a particle is much larger than , , the phase changes rapidly along the path: the amplitude averages to a small number.
Thus the Planck constant sets the boundary between classical and quantum mechanics.
All of the paths contribute in the quantum action principle. At the end point, where the paths meet, the paths with similar phases add, and those with phases differing by subtract. Close to the path expected from classical physics, phases tend to align; the tendency is stronger for more massive objects that have larger values of action. In the classical limit, one path dominates the path of stationary action.
Schwinger's action principle
Schwinger's approach relates variations in the transition amplitudes to variations in an action matrix element:
:
where the action operator is
:
The Schwinger form makes analysis of variation of the Lagrangian itself, for example, variation in potential source strength, especially transparent.
The optico-mechanical analogy
For every path, the action integral builds in value from zero at the starting point to its final value at the end. Any nearby path has similar values at similar distances from the starting point. Lines or surfaces of constant partial action value can be drawn across the paths, creating a wave-like view of the action. Analysis like this connects particle-like rays of
geometrical optics
Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of '' rays''. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumsta ...
with the wavefronts of
Huygens–Fresnel principle
The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanatin ...
.
Applications
Action principles are applied to derive differential equations like the Euler–Lagrange equations or as direct applications to physical problems.
Classical mechanics
Action principles can be directly applied to many problems in
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, e.g. the shape of elastic rods under load,
the shape of a liquid between two vertical plates (a
capillary
A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
),
or the motion of a pendulum when its support is in motion.
Chemistry
Quantum action principles are used in the quantum theory of atoms in molecules ( QTAIM), a way of decomposing the computed electron density of molecules in to atoms as a way of gaining insight into chemical bonding.
General relativity
Inspired by Einstein's work on
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
, the renowned mathematician David Hilbert applied the principle of least action to derive the field equations of general relativity. His action, now known as the
Einstein–Hilbert action
The Einstein–Hilbert action (also referred to as Hilbert action) in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the metric signature, the gravitational part of the act ...
,
:
contained a relativistically invariant volume element and the Ricci
scalar curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
. The scale factor is the
Einstein gravitational constant
In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it.
The equations were published by Einstein in 1915 in the form ...
.
Other applications
The action principle is so central in modern physics and mathematics that it is widely applied including in
thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
,
fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them.
It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and ...
, the
theory of relativity
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...
,
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
,
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
The action principle is preceded by earlier ideas in
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultra ...
. In
ancient Greece
Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
,
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
wrote in his ''Catoptrica'' that, for the path of light reflecting from a mirror, the
angle of incidence
Angle of incidence is a measure of deviation of something from "straight on" and may refer to:
* Angle of incidence (aerodynamics), angle between a wing chord and the longitudinal axis, as distinct from angle of attack
In fluid dynamics, ang ...
equals the
angle of reflection
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. ...
.
Hero of Alexandria
Hero of Alexandria (; grc-gre, Ἥρων ὁ Ἀλεξανδρεύς, ''Heron ho Alexandreus'', also known as Heron of Alexandria ; 60 AD) was a Greek mathematician and engineer who was active in his native city of Alexandria, Roman Egypt. He ...
later showed that this path has the shortest length and least time.
Building on the early work of
Pierre Louis Maupertuis
Pierre Louis Moreau de Maupertuis (; ; 1698 – 27 July 1759) was a French mathematician, philosopher and man of letters. He became the Director of the Académie des Sciences, and the first President of the Prussian Academy of Science, at the ...
,
Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
William Rowan Hamilton
Sir William Rowan Hamilton LL.D, DCL, MRIA, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ire ...
and in tandem
Carl Gustav Jacobi
Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasional ...
developed a variational form for classical mechanics known as the
Hamilton–Jacobi equation
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechan ...
.Nakane, Michiyo, and Craig G. Fraser. "The Early History of Hamilton-Jacobi Dynamics 1834–1837." Centaurus 44.3-4 (2002): 161–227.
In 1915, David Hilbert applied the variational principle to derive
Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's equations of
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
.
In 1933, the physicist
Paul Dirac
Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Unive ...
demonstrated how this principle can be used in quantum calculations by discerning the quantum mechanical underpinning of the principle in the
quantum interference
In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
of amplitudes. Subsequently
Julian Schwinger
Julian Seymour Schwinger (; February 12, 1918 – July 16, 1994) was a Nobel Prize winning American theoretical physicist. He is best known for his work on quantum electrodynamics (QED), in particular for developing a relativistically invariant ...
and
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superf ...
independently applied this principle in quantum electrodynamics.J. S. Schwinger, Quantum Kinematics and Dynamics, W. A. Benjamin (1970), .