
In mathematics, an isometry (or congruence, or congruent transformation) is a
distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
-preserving transformation between
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s, usually assumed to be
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
. The word isometry is derived from the
Ancient Greek
Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". If the transformation is from a metric space to itself, it is a kind of
geometric transformation
In mathematics, a geometric transformation is any bijection of a set to itself (or to another such set) with some salient geometrical underpinning, such as preserving distances, angles, or ratios (scale). More specifically, it is a function wh ...
known as a
motion
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an o ...
.
Introduction
Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a
transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space.
In a two-dimensional or three-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, two geometric figures are
congruent
Congruence may refer to:
Mathematics
* Congruence (geometry), being the same size and shape
* Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure
* In modu ...
if they are related by an isometry;
the isometry that relates them is either a rigid motion (translation or rotation), or a
composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of a rigid motion and a
reflection.
Isometries are often used in constructions where one space is
embedded in another space. For instance, the
completion of a metric space
involves an isometry from
into
a
quotient set
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
of the space of
Cauchy sequence
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are le ...
s on
The original space
is thus isometrically
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a subspace of a
complete metric space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in .
Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
, and it is usually identified with this subspace.
Other embedding constructions show that every metric space is isometrically isomorphic to a
closed subset
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
of some
normed vector space
The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898.
The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war ...
and that every complete metric space is isometrically isomorphic to a closed subset of some
Banach space
In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
.
An isometric surjective linear operator on a
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
is called a
unitary operator
In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product.
Non-trivial examples include rotations, reflections, and the Fourier operator.
Unitary operators generalize unitar ...
.
Definition
Let
and
be
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s with metrics (e.g., distances)
and
A
map
A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...
is called an isometry or distance-preserving map if for any
,
:
[
]
An isometry is automatically
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
; otherwise two distinct points, ''a'' and ''b'', could be mapped to the same point, thereby contradicting the coincidence axiom of the metric ''d'', i.e.,
if and only if
. This proof is similar to the proof that an
order embedding
In order theory, a branch of mathematics, an order embedding is a special kind of monotone function, which provides a way to include one partially ordered set into another. Like Galois connections, order embeddings constitute a notion which is stri ...
between
partially ordered set
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
s is injective. Clearly, every isometry between metric spaces is a
topological embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.
When some object X is said to be embedded in another object Y, the embedding is g ...
.
A global isometry, isometric isomorphism or congruence mapping is a
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
isometry. Like any other bijection, a global isometry has a
function inverse.
The inverse of a global isometry is also a global isometry.
Two metric spaces ''X'' and ''Y'' are called isometric if there is a bijective isometry from ''X'' to ''Y''.
The
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
of bijective isometries from a metric space to itself forms a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
with respect to
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
, called the
isometry group
In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
.
There is also the weaker notion of ''path isometry'' or ''arcwise isometry'':
A path isometry or arcwise isometry is a map which preserves the
lengths of curves; such a map is not necessarily an isometry in the distance preserving sense, and it need not necessarily be bijective, or even injective. This term is often abridged to simply ''isometry'', so one should take care to determine from context which type is intended.
;Examples
* Any
reflection,
translation
Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
and
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
is a global isometry on
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
s. See also
Euclidean group
In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
and .
* The map
in
is a ''path isometry'' but not a (general) isometry. Note that unlike an isometry, this path isometry does not need to be injective.
Isometries between normed spaces
The following theorem is due to Mazur and Ulam.
:Definition: The midpoint of two elements and in a vector space is the vector .
Linear isometry
Given two
normed vector space
The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898.
The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war ...
s
and
a linear isometry is a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
that preserves the norms:
:
for all
Linear isometries are distance-preserving maps in the above sense.
They are global isometries if and only if they are
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
.
In an
inner product space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
, the above definition reduces to
:
for all
which is equivalent to saying that
This also implies that isometries preserve inner products, as
:
.
Linear isometries are not always
unitary operator
In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product.
Non-trivial examples include rotations, reflections, and the Fourier operator.
Unitary operators generalize unitar ...
s, though, as those require additionally that
and
(i.e. the
domain and
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
coincide and
defines a
coisometry).
By the
Mazur–Ulam theorem, any isometry of normed vector spaces over
is
affine
Affine may describe any of various topics concerned with connections or affinities.
It may refer to:
* Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology
* Affine cipher, a special case of the more general substi ...
.
A linear isometry also necessarily preserves angles, therefore a linear isometry transformation is a
conformal linear transformation.
;Examples
* A
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
from
to itself is an isometry (for the
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
) if and only if its matrix is
unitary
Unitary may refer to:
Mathematics
* Unitary divisor
* Unitary element
* Unitary group
* Unitary matrix
* Unitary morphism
* Unitary operator
* Unitary transformation
* Unitary representation
* Unitarity (physics)
* ''E''-unitary inverse semigr ...
.
[
][
]
Manifold
An isometry of a manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
is any (smooth) mapping of that manifold into itself, or into another manifold that preserves the notion of distance between points.
The definition of an isometry requires the notion of a metric
Metric or metrical may refer to:
Measuring
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
...
on the manifold; a manifold with a (positive-definite) metric is a Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
, one with an indefinite metric is a pseudo-Riemannian manifold
In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
. Thus, isometries are studied in Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
.
A local isometry from one (pseudo
Pseudo- (from , ) is a prefix used in a number of languages, often to mark something as a fake or insincere version.
In English, the prefix is used on both nouns and adjectives. It can be considered a privative prefix specifically denoting '' ...
-)Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
to another is a map which pulls back the metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
on the second manifold to the metric tensor on the first. When such a map is also a diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.
Definit ...
, such a map is called an isometry (or isometric isomorphism), and provides a notion of isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
("sameness") in the category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
Rm of Riemannian manifolds.
Definition
Let and be two (pseudo-)Riemannian manifolds, and let be a diffeomorphism. Then is called an isometry (or isometric isomorphism) if
:
where denotes the pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward.
Precomposition
Precomposition with a function probably provides the most elementary notion of pullback: ...
of the rank (0, 2) metric tensor by .
Equivalently, in terms of the pushforward we have that for any two vector fields on (i.e. sections of the tangent bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
),
:
If is a local diffeomorphism In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.
Form ...
such that then is called a local isometry.
Properties
A collection of isometries typically form a group, the isometry group
In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
. When the group is a continuous group
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
, the infinitesimal generators of the group are the Killing vector fields.
The Myers–Steenrod theorem states that every isometry between two connected Riemannian manifolds is smooth (differentiable). A second form of this theorem states that the isometry group of a Riemannian manifold is a Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
.
Symmetric space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geome ...
s are important examples of Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s that have isometries defined at every point.
Generalizations
* Given a positive real number ε, an ε-isometry or almost isometry (also called a Hausdorff approximation) is a map between metric spaces such that
*# for one has and
*# for any point there exists a point with
:That is, an -isometry preserves distances to within and leaves no element of the codomain further than away from the image of an element of the domain. Note that -isometries are not assumed to be continuous.
* The restricted isometry property characterizes nearly isometric matrices for sparse vectors.
* Quasi-isometry
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. ...
is yet another useful generalization.
* One may also define an element in an abstract unital C*-algebra to be an isometry:
*: is an isometry if and only if
:Note that as mentioned in the introduction this is not necessarily a unitary element because one does not in general have that left inverse is a right inverse.
* On a pseudo-Euclidean space In mathematics and theoretical physics, a pseudo-Euclidean space of signature is a finite- dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vect ...
, the term ''isometry'' means a linear bijection preserving magnitude. See also Quadratic spaces.
See also
* Beckman–Quarles theorem
*
* The second dual of a Banach space as an isometric isomorphism
* Euclidean plane isometry In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, a ...
* Flat (geometry)
In geometry, a flat is an affine subspace, i.e. a subset of an affine space that is itself an affine space. Particularly, in the case the parent space is Euclidean, a flat is a Euclidean subspace which inherits the notion of distance from it ...
* Homeomorphism group In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. They are important to the theory of top ...
* Involution
Involution may refer to: Mathematics
* Involution (mathematics), a function that is its own inverse
* Involution algebra, a *-algebra: a type of algebraic structure
* Involute, a construction in the differential geometry of curves
* Exponentiati ...
* Isometry group
In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
* Motion (geometry)
In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. More generally, the term ''motion'' is a ...
* Myers–Steenrod theorem
* 3D isometries that leave the origin fixed
* Partial isometry
Partial may refer to:
Mathematics
*Partial derivative, derivative with respect to one of several variables of a function, with the other variables held constant
** ∂, a symbol that can denote a partial derivative, sometimes pronounced "partial ...
* Scaling (geometry)
In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions ( isotropically). The result of uniform s ...
* Semidefinite embedding
* Space group
In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
* Symmetry in mathematics
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.
Given a structured obje ...
Footnotes
References
Bibliography
*
*
*
*
*
*
*
{{Metric spaces
Equivalence (mathematics)
Functions and mappings
Metric geometry
Riemannian geometry
Symmetry