Inseparable Polynomial
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
''P''(''X'') over a given
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''K'' is separable if its
roots A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients. Root or roots may also refer to: Art, entertainment, and media * ''The Root'' (magazine), an online magazine focusin ...
are distinct in an
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of ''K'', that is, the number of distinct roots is equal to the degree of the polynomial. This concept is closely related to
square-free polynomial In mathematics, a square-free polynomial is a univariate polynomial (over a field or an integral domain) that has no multiple root in an algebraically closed field containing its coefficients. In characteristic 0, or over a finite field, a univar ...
. If ''K'' is a
perfect field In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has no multiple roots in any field extension ''F/k''. * Every irreducible polynomial over ''k'' has non-zero f ...
then the two concepts coincide. In general, ''P''(''X'') is separable if and only if it is square-free over any field that contains ''K'', which holds if and only if ''P''(''X'') is
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
to its
formal derivative In mathematics, the formal derivative is an operation on elements of a polynomial ring or a ring of formal power series that mimics the form of the derivative from calculus. Though they appear similar, the algebraic advantage of a formal deriv ...
''D'' ''P''(''X'').


Older definition

In an older definition, ''P''(''X'') was considered separable if each of its irreducible factors in ''K'' 'X''is separable in the modern definition. In this definition, separability depended on the field ''K''; for example, any polynomial over a
perfect field In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has no multiple roots in any field extension ''F/k''. * Every irreducible polynomial over ''k'' has non-zero f ...
would have been considered separable. This definition, although it can be convenient for
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
, is no longer in use.


Separable field extensions

Separable polynomials are used to define
separable extension In field theory (mathematics), field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial (field theory), minimal polynomial of \alpha over is a separable po ...
s: A
field extension In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
is a separable extension if and only if for every in which is algebraic over , the minimal polynomial of over is a separable polynomial.
Inseparable extension In field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polyno ...
s (that is, extensions which are not separable) may occur only in positive characteristic. The criterion above leads to the quick conclusion that if ''P'' is irreducible and not separable, then ''D'' ''P''(''X'') = 0. Thus we must have :''P''(''X'') = ''Q''(''X''''p'') for some polynomial ''Q'' over ''K'', where the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
''p'' is the characteristic. With this clue we can construct an example: :''P''(''X'') = ''X''''p'' − ''T'' with ''K'' the field of
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s in the indeterminate ''T'' over the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
with ''p'' elements. Here one can prove directly that ''P''(''X'') is irreducible and not separable. This is actually a typical example of why ''inseparability'' matters; in geometric terms ''P'' represents the mapping on the
projective line In projective geometry and mathematics more generally, a projective line is, roughly speaking, the extension of a usual line by a point called a '' point at infinity''. The statement and the proof of many theorems of geometry are simplified by the ...
over the finite field, taking co-ordinates to their ''p''th power. Such mappings are fundamental to the
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
of finite fields. Put another way, there are coverings in that setting that cannot be 'seen' by Galois theory. (See Radical morphism for a higher-level discussion.) If ''L'' is the field extension :''K''(''T''1/''p''), in other words the
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polyn ...
of ''P'', then ''L''/''K'' is an example of a purely inseparable field extension. It is of degree ''p'', but has no
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
fixing ''K'', other than the identity, because ''T''1/''p'' is the unique root of ''P''. This shows directly that Galois theory must here break down. A field such that there are no such extensions is called ''perfect''. That finite fields are perfect follows ''a posteriori'' from their known structure. One can show that the
tensor product of fields In mathematics, the tensor product of two field (mathematics), fields is their tensor product of algebras, tensor product as algebra over a field, algebras over a common subfield (mathematics), subfield. If no subfield is explicitly specified, t ...
of ''L'' with itself over ''K'' for this example has
nilpotent In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idem ...
elements that are non-zero. This is another manifestation of inseparability: that is, the tensor product operation on fields need not produce a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
that is a product of fields (so, not a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
semisimple ring In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself ...
). If ''P''(''x'') is separable, and its roots form a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
(a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the field ''K''), then ''P''(''x'') is an
additive polynomial In mathematics, the additive polynomials are an important topic in classical algebraic number theory. Definition Let ''k'' be a field of prime characteristic ''p''. A polynomial ''P''(''x'') with coefficients in ''k'' is called an additive po ...
.


Applications in Galois theory

Separable polynomials occur frequently in
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
. For example, let ''P'' be an irreducible polynomial with
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s and ''p'' be a prime number which does not divide the leading coefficient of ''P''. Let ''Q'' be the polynomial over the finite field with ''p'' elements, which is obtained by reducing
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
''p'' the coefficients of ''P''. Then, if ''Q'' is separable (which is the case for every ''p'' but a finite number) then the degrees of the irreducible factors of ''Q'' are the lengths of the
cycles Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in ...
of some
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
of the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
of ''P''. Another example: ''P'' being as above, a resolvent ''R'' for a group ''G'' is a polynomial whose coefficients are polynomials in the coefficients of ''P'', which provides some information on the Galois group of ''P''. More precisely, if ''R'' is separable and has a
rational Rationality is the quality of being guided by or based on reason. In this regard, a person acts rationally if they have a good reason for what they do, or a belief is rational if it is based on strong evidence. This quality can apply to an ...
root then the Galois group of ''P'' is contained in ''G''. For example, if ''D'' is the
discriminant In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the zero of a function, roots without computing them. More precisely, it is a polynomial function of the coef ...
of ''P'' then X^2-D is a resolvent for the
alternating group In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted ...
. This resolvent is always separable (assuming the characteristic is not 2) if ''P'' is irreducible, but most resolvents are not always separable.


See also

*
Frobenius endomorphism In commutative algebra and field theory (mathematics), field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative Ring (mathematics), rings with prime number, prime characteristic (algebra), ...


References

{{Reflist Field (mathematics) Polynomials