HOME

TheInfoList



OR:

An inelastic collision, in contrast to an
elastic collision In physics, an elastic collision occurs between two physical objects in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such a ...
, is a
collision In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great for ...
in which kinetic energy is not conserved due to the action of
internal friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding (motion), sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete lis ...
. In collisions of macroscopic bodies, some
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
is turned into vibrational energy of the
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, causing a
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
ing effect, and the bodies are deformed. The
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s of a gas or
liquid Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
rarely experience perfectly
elastic collision In physics, an elastic collision occurs between two physical objects in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such a ...
s because kinetic energy is exchanged between the molecules' translational motion and their internal
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
with each collision. At any one instant, half the collisions are – to a varying extent – inelastic (the pair possesses less kinetic energy after the collision than before), and half could be described as “super-elastic” (possessing ''more'' kinetic energy after the collision than before). Averaged across an entire sample, molecular collisions are elastic. Although inelastic collisions do not conserve kinetic energy, they do obey
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
. Simple ballistic pendulum problems obey the conservation of kinetic energy ''only'' when the block swings to its largest angle. In
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies th ...
, an inelastic collision is one in which the incoming
particle In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
causes the nucleus it strikes to become excited or to break up. Deep inelastic scattering is a method of probing the structure of subatomic particles in much the same way as Rutherford probed the inside of the atom (see
Rutherford scattering The Rutherford scattering experiments were a landmark series of experiments by which scientists learned that every atom has a Atomic nucleus, nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after ...
). Such experiments were performed on
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s in the late 1960s using high-energy
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s at the Stanford Linear Accelerator (SLAC). As in Rutherford scattering, deep inelastic scattering of electrons by proton targets revealed that most of the incident electrons interact very little and pass straight through, with only a small number bouncing back. This indicates that the charge in the proton is concentrated in small lumps, reminiscent of Rutherford's discovery that the positive charge in an atom is concentrated at the nucleus. However, in the case of the proton, the evidence suggested three distinct concentrations of charge (
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s) and not one.


Formula

The formula for the velocities after a one-dimensional collision is: \begin v_a &= \frac \\ v_b &= \frac \end where *''v''a is the final velocity of the first object after impact *''v''b is the final velocity of the second object after impact *''u''a is the initial velocity of the first object before impact *''u''b is the initial velocity of the second object before impact *''m''a is the mass of the first object *''m''b is the mass of the second object *''C''R is the
coefficient of restitution In physics, the coefficient of restitution (COR, also denoted by ''e''), can be thought of as a measure of the elasticity of a collision between two bodies. It is a dimensionless parameter defined as the ratio of the relative velocity of sepa ...
; if it is 1 we have an
elastic collision In physics, an elastic collision occurs between two physical objects in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such a ...
; if it is 0 we have a perfectly inelastic collision, see below. In a
center of momentum frame In physics, the center-of-momentum frame (COM frame) of a system, also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The ''center of momentum'' ...
the formulas reduce to: \begin v_a &= -C_R u_a \\ v_b &= -C_R u_b \end For two- and three-dimensional collisions the velocities in these formulas are the components perpendicular to the tangent line/plane at the point of contact. If assuming the objects are not rotating before or after the collision, the normal impulse is: J_ = \frac (1 + C_R) (\vec - \vec) \cdot \vec where \vec is the normal vector. Assuming no friction, this gives the velocity updates: \begin \Delta \vec &= \frac \vec \\ \Delta \vec &= -\frac \vec \end


Perfectly inelastic collision

A perfectly inelastic collision occurs when the maximum amount of kinetic energy of a system is lost. In a perfectly inelastic collision, i.e., a zero
coefficient of restitution In physics, the coefficient of restitution (COR, also denoted by ''e''), can be thought of as a measure of the elasticity of a collision between two bodies. It is a dimensionless parameter defined as the ratio of the relative velocity of sepa ...
, the colliding particles stick together. In such a collision, kinetic energy is lost by bonding the two bodies together. This bonding energy usually results in a maximum kinetic energy loss of the system. It is necessary to consider conservation of momentum: (Note: In the sliding block example above, momentum of the two body system is only conserved if the surface has zero friction. With friction, momentum of the two bodies is transferred to the surface that the two bodies are sliding upon. Similarly, if there is air resistance, the momentum of the bodies can be transferred to the air.) The equation below holds true for the two-body (Body A, Body B) system collision in the example above. In this example, momentum of the system is conserved because there is no friction between the sliding bodies and the surface. m_a u_a + m_b u_b = \left( m_a + m_b \right) v where ''v'' is the final velocity, which is hence given by v=\fracThe reduction of total kinetic energy is equal to the total kinetic energy before the collision in a
center of momentum frame In physics, the center-of-momentum frame (COM frame) of a system, also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The ''center of momentum'' ...
with respect to the system of two particles, because in such a frame the kinetic energy after the collision is zero. In this frame most of the kinetic energy before the collision is that of the particle with the smaller mass. In another frame, in addition to the reduction of kinetic energy there may be a transfer of kinetic energy from one particle to the other; the fact that this depends on the frame shows how relative this is. The change in kinetic energy is hence: \Delta KE = \mu u^2_ = \frac\frac, u_a - u_b, ^2 where μ is the
reduced mass In physics, reduced mass is a measure of the effective inertial mass of a system with two or more particles when the particles are interacting with each other. Reduced mass allows the two-body problem to be solved as if it were a one-body probl ...
and urel is the
relative velocity The relative velocity of an object ''B'' relative to an observer ''A'', denoted \mathbf v_ (also \mathbf v_ or \mathbf v_), is the velocity vector of ''B'' measured in the rest frame of ''A''. The relative speed v_ = \, \mathbf v_\, is the v ...
of the bodies before collision. With time reversed we have the situation of two objects pushed away from each other, e.g. shooting a
projectile A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found ...
, or a
rocket A rocket (from , and so named for its shape) is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely ...
applying
thrust Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that ...
(compare the derivation of the Tsiolkovsky rocket equation).


Partially inelastic collisions

Partially inelastic collisions are the most common form of collisions in the real world. In this type of collision, the objects involved in the collisions do not stick, but some kinetic energy is still lost. Friction, sound and heat are some ways the kinetic energy can be lost through partial inelastic collisions.


See also

*
Collision In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great for ...
*
Elastic collision In physics, an elastic collision occurs between two physical objects in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such a ...
*
Coefficient of restitution In physics, the coefficient of restitution (COR, also denoted by ''e''), can be thought of as a measure of the elasticity of a collision between two bodies. It is a dimensionless parameter defined as the ratio of the relative velocity of sepa ...


References

{{Authority control Classical mechanics Collision Particle physics Scattering ru:Удар#Абсолютно неупругий удар